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Representation and computation in visual 
working memory

Paul M. Bays    1, Sebastian Schneegans    1, Wei Ji Ma    2 & 
Timothy F. Brady    3 

The ability to sustain internal representations of the sensory environment 
beyond immediate perception is a fundamental requirement of cognitive 
processing. In recent years, debates regarding the capacity and fidelity of 
the working memory (WM) system have advanced our understanding of the 
nature of these representations. In particular, there is growing recognition 
that WM representations are not merely imperfect copies of a perceived 
object or event. New experimental tools have revealed that observers 
possess richer information about the uncertainty in their memories and 
take advantage of environmental regularities to use limited memory 
resources optimally. Meanwhile, computational models of visuospatial 
WM formulated at different levels of implementation have converged on 
common principles relating capacity to variability and uncertainty. Here we 
review recent research on human WM from a computational perspective, 
including the neural mechanisms that support it.

Since the dawn of perception research, theoretical frameworks have 
been built around the notions of representation and computation1. 
A key aspect of internal representations is that they are noisy: they 
vary even upon repeated presentations of the same physical stimulus. 
A key aspect of computation is inference: because the brain has no 
direct access to stimulus properties, it has to build beliefs about them 
based on the available representations2. In perception research, great 
progress in understanding representation and computation has been 
made by combining experiments with mathematical process models, 
which specify precisely how information is received and processed, 
leading up to a decision. Such models allow the researcher to disen-
tangle representation and computation and compare theories for 
each stage.

Although this agenda has been pursued for over 150 years in 
perception research, it has only recently become widespread in the 
field of visual working memory (WM). This field initially3 used rather 
simplistic notions of representation and overlooked computation 
altogether. The dominant notion was that visual WM holds internal 
copies of visual objects or features, which can be directly accessed 
for judgement or decision-making at a later point in time. In the past 
20 years, the shortcomings of this metaphor have become clear,  

in part driven by the slots versus resources debate (Box 1). The gen-
eral conception emerging from this debate is that a combination of 
visual processing and attention to objects induces a high-dimensional 
memory state (for example, a pattern of neural activity) that is inform-
ative about the objects’ features and can be sustained once they are 
no longer available to the senses. In this framework, recall can be 
understood as probabilistic inference, based on the memory state, 
of the past features and their relationships. This process is illustrated 
in Fig. 1 for the elementary experimental task of reproducing from 
memory a colour stimulus, corresponding to a specific point in a 
space of hues (Fig. 1, left). Due to a combination of factors, including 
internal noise, limited neural signal, interactions with other stimuli 
in memory and dynamics during the delay period, the same stimulus 
can result in many different memory states at the time of the memory 
test (Fig. 1, middle).

Unlike the stimulus itself, the information that a particular mem-
ory state provides about the stimulus cannot in general be captured by 
a single point in the parameter space. Instead, it is fully described by a 
likelihood function (Fig. 1, right), which can be interpreted as showing 
the degree to which the obtained memory state is compatible with 
different hypothesized stimulus inputs. If the observer is instructed 
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Access to memory uncertainty
Just because the memory state provides this richer information does 
not mean the brain makes use of it or the observer has conscious 
access to it. In research on human perception, the question of whether 
perceptual decisions take into account uncertainty is a classic one. 
The literature on Bayesian integration and Bayesian cue combination4 
has demonstrated convincingly that the mind takes into account 
uncertainty on a trial-by-trial basis when weighing evidence. In the 
realm of WM, recent experimental methods have begun to probe 
in detail the information observers can extract from their memory 
state (Fig. 2). The familiar sense that we are more certain about some 
memories than others is experimentally validated by studies that 
ask observers to report their confidence alongside a point estimate 
(Fig. 2a). As the number of items to remember increases, the error 
becomes more broadly distributed and the average reported confi-
dence decreases (Fig. 2b). Confidence ratings also vary across trials 
with a fixed set size, and the error distribution is narrower for trials 

to choose a best estimate of the previously presented hue, they might 
choose the peak of the likelihood (the maximum likelihood estimate) 
and the experimenter might record the observer’s error as the distance 
between this estimate and the presented hue. The distribution of recall 
errors over many trials, and in particular the changes in distribution 
observed when multiple items are held in memory simultaneously, 
have provided important evidence for discriminating between mod-
els of WM (see the section ‘Models that implement WM uncertainty’ 
below). However, unlike the error distribution, a full likelihood function 
exists on each single trial. For different memory states, the likelihood 
function could be relatively narrow (compatible with only a small 
range of possible inputs; Fig. 1, top right) or broad (providing little or 
no information to discriminate between inputs; Fig. 1, bottom right). 
Memory uncertainty can be quantified as the width (for example, 
standard deviation) of the likelihood function, but even this description 
is incomplete (for example, when the likelihood is asymmetric (Fig. 1, 
centre right) or multimodal).

Box 1

Slots versus resource models
Influential initial models of visual WM3,77 were often based on the idea 
that, to be remembered, an object must be stored in one of a fixed 
number of memory slots, such that up to around four items could be 
remembered without error and, beyond that limit, no further items 
could be remembered at all. Such models were simple and made 
strong predictions that initially appeared to be borne out in tasks such 
as change detection, leading them to be highly influential. However, 
as evidence grew that items in memory were subject to substantial 
variability, and that this noise increased with memory load even from 
one to two items (for example, refs. 30,45,273), the simple picture 
painted by slot models was no longer sufficient to capture the data. 
Alternative resource models were developed in which a fixed quantity 
of representational signal is distributed between memory items, with 
no fixed upper limit on the number of items represented.

Faced with the argument that noise-based accounts made the 
notion of slots redundant, attempts to adapt slot models have 
taken two main routes. First, early evidence that certain changes 
to complex objects can be detected when it is the only item in 
memory but not when multiple items must be remembered (for 
example, ref. 85) led to the proposal that the limit of four slots 
coexisted with noisy storage within each slot (for example, ref. 274). 
Second, the influential slots plus averaging model proposed to 
adapt the slot model by allowing a single item to be represented in 
multiple slots, with averaging of the independent representations31. 
However, this model has been criticized on multiple fronts: for being 
functionally identical to a discrete resource model (specifically, 
the sample size model, with samples re-branded as slots29), for 
failures in self-consistency (for example, refs. 275,276) and for 
failing to fit performance across set sizes as accurately as the best 
resource models without the slot constraint19,41,42,277. Although one 
study278 argued that the better fit of resource models disappeared 
when stimulus-dependent sources of variability were accounted 
for, subsequent work76 showed that a resource-based model 
incorporating efficient coding fit the same data better while also 
predicting the patterns of stimulus-dependent variability from first 
principles (see the section ‘WM in a structured environment’).

This has resulted in the slots plus averaging model losing favour 
and a return to slot models that allow for memory precision to be 

resource based and vary continuously, but with an additional upper 
bound on how many representations can exist and hence on overall 
performance (for example, ref. 44). Arguments for this kind of model 
are typically based on observations interpreted as true guesses (that 
is, responses that do not appear to be based on any knowledge of 
the previously presented stimulus). However, all current resource 
models predict such zero-precision estimates (or estimates 
indistinguishably close to zero) as arising from probabilistic variation 
in precision (Fig. 3), and when models have been formally fit to such 
data, resource models have been found to reproduce the patterns 
interpreted as guesses without needing an additional mechanism (for 
example, in whole-report delayed estimation29). Thus, pure resource 
accounts are criticized on the basis of patterns of data that they 
accurately account for, with those patterns claimed as evidence for 
an alternative model that has not been fully formulated in quantitative 
terms and has not been shown to reproduce the data.

Importantly, although slot models have changed over time from 
simple models that made strong predictions to resources plus 
guessing models that retain little of the original slot concept, the 
wider field has not always kept track of this evolution. For example, 
many researchers continue to report K values based on change 
detection data (counts of how many items are in memory), even 
though the all-or-nothing assumption underlying the calculation 
of K3,279 is incompatible even with modern slot models, which 
assume that items are not simply present or absent from memory 
but at minimum also have an associated precision31,44. This may 
lead to researchers misinterpreting response biases as memory 
limits43. Relatedly, many studies fit mixture models that assume 
a some-or-none mixture of imprecise memories and guesses 
to continuous reproduction data to account for the long tail of 
errors, even though such models have been shown not to isolate 
independent precision and guess rate parameters36,266. In a change 
detection study, a variable precision model accounted best for 
apparent guesses, even though it did not contain a guessing 
component41. Overall, then, the field should carefully specify what 
is meant when appealing to slot models, since such models are not 
generally slot-like in their character anymore, allowing for many kinds 
of continuous variation but specifying an additional item limit that is 
superfluous in accounting for empirical performance.
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with higher confidence ratings5 (Fig. 2c), revealing access to latent 
information about uncertainty.

Other researchers have tried to quantify uncertainty in the stimu-
lus dimension itself, rather than using a confidence judgement. Instead 
of asking observers for a confidence rating, they may be instructed to 
make a secondary, uncertainty-based decision6–8 (Fig. 2d). For exam-
ple, the observer could first recall the stimulus, then set an interval 
around the recalled value, intended to capture the true value. Points 
are awarded for a successful capture, but fewer points are awarded 
when the interval is larger. Thus, a point-maximizing observer would 
set a larger interval when uncertainty is high and a smaller interval 
when uncertainty is low. This technique reveals a strong relationship 
between interval size and error magnitude6–8 (Fig. 2e), consistent with 
the studies that use confidence ratings. Moreover, in parallel with per-
ceptual studies9, observers combine their memory-based likelihood 
with previous information about a feature, even if that information 
varies from trial to trial7.

Change detection tasks, even when not paired with a confidence 
report, can serve to establish whether uncertainty is taken into account 
implicitly in WM-based decisions10,11. This property makes change 
detection useful for studying the WM representation of uncertainty in 
non-human animals12. A large difference between the memory repre-
sentation of the study and the probe provides less evidence for a true 
change if uncertainty is higher (Fig. 2f). In these studies, variations in 
uncertainty not only arose spontaneously, but were also experimen-
tally induced by varying the reliability of the stimulus information 
from trial to trial and from item to item. These studies used formal 
model comparison to conclude that observers take into account WM 
uncertainty in their decision.

Taken together, the evidence that uncertainty is maintained in 
WM, and that uncertainty can be estimated continuously—not just 
whether the memory is present or absent—is strong at this point. Funda-
mentally, this means that WM is much richer than previously believed. 
An open question in perception is whether observers use full probabil-
ity distributions or only summary statistics, such as the width of the 
distribution13–15. WM researchers have started to study the analogous 

question8, with initial evidence suggesting that use of the likelihood 
function extends beyond its width.

Models that implement WM uncertainty
Despite variation between models of WM in their levels of implementa-
tion and descriptive language, recent years have seen a notable conver-
gence on a common set of principles required to capture behavioural 
performance on reproduction tasks. Crucially, the modern models of 
visual WM described in this section all imply a richer underlying stimu-
lus representation that carries information about memory uncertainty. 
Other recent models16–18 have made important advances in understand-
ing how conjunctions of features are stored, and these are reviewed in 
a separate section (‘Feature binding’) below.

Population coding accounts19, inspired by similar models of atten-
tion, sensory integration and decision-making20–22, describe WM in 
terms of encoding and decoding of stimulus information from the 
noisy activity of large populations of neurons tuned to different fea-
tures (Fig. 3a). Variability arises in this model as a consequence of the 
probabilistic generation of spikes. Resource limitations are identified 
with the allocation of a limited quantity of neural signal or gain between 
neurons responding to different items. This constraint explains why 
recall fidelity decreases with the number of items held simultaneously 
in memory, and also accounts for effects of stimulus salience and 
behavioural priority on recall.

Access to uncertainty in this model is automatic, in the sense that 
a decoder with knowledge of the population tuning functions can 
reconstruct a full likelihood function23,24. Li and colleagues25 combined 
the theory of probabilistic population coding26,27 with a generative 
model for functional magnetic resonance imaging (fMRI) activity22,28 
to decode uncertainty along with the behavioural estimate from the 
pattern of voxel responses on each trial. The decoded uncertainty cor-
related with a behavioural read-out of certainty or confidence.

Under specific simplifying assumptions, the decoding of stochas-
tically generated spikes in a neural population response can be viewed 
as equivalent to the averaging of noisy samples of a stimulus feature29 
(Fig. 3b). This provides a connection to cognitive models that describe 
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Fig. 1 | Recall as inference about the past. In this minimal illustration, viewing 
a single colour patch drawn from a continuous space of hues (left) at time t1 
induces stochastic changes in the neural system that propagate in time, resulting 
in one of many possible memory states (middle) at time t2 when the memory 
is probed. The information a memory state contains about the stimulus hue 
is described by a likelihood function (right)—the probability of obtaining that 
particular memory state given each stimulus hue that could have been presented 

at time t1. If, as in a typical delayed estimation task, the observer is asked to select 
a single hue that best matches the memory (a point estimate), a good choice 
might be the maximum likelihood estimate (coloured pins). However, the full 
likelihood function contains richer information about the plausibility of different 
hues that, to the extent the observer has access to it, may be revealed using other 
experimental methods (Fig. 2).
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resource allocation as distributing a limited (but in some cases arbitrar-
ily large) number of discrete samples between memory items30–32, a 
concept that was originally proposed to model selective attention33 
and that was later successfully applied to multiple-object tracking34,35. 
With a fixed, small number of samples, this account has been presented 
as a variant of the classic slot model (the slots plus averaging model31). 
However, fits to continuous recall data are improved when the number 
of samples varies randomly and independently between items29, in 
analogy to stochastic spiking. Samples are discrete in this account, but 
moment-to-moment variability in the number of samples fits less well 
with the concept of slots, and the resource that is shared among items 
(the mean number of samples) is a continuous variable.

As an alternative perspective, the target confusability competition 
(TCC) model36 describes WM decisions as based on a noisy familiarity 
signal whose mean is highest for the shown colour (or other stimulus) 
and lower for stimuli that are less similar to the shown item (Fig. 3c). 
This model makes an explicit connection to signal detection concepts 
commonly used in long-term memory measurement, associating 
WM performance with the discriminability (d′) between maximally 

distant stimuli and confidence with the peak familiarity amplitude. The 
familiarity function in the TCC model is closely related to the tuning in 
population coding models, which in turn have a geometric representa-
tion in terms of how distinct the representations associated with dif-
ferent stimuli are from each other37. A proposed relationship between 
the familiarity function in the TCC model and empirical measures of 
psychological similarity is disputed36,38.

The mathematics of averaging dictate that the dispersion of 
errors under sampling and population coding models varies with 
the number of samples or spikes (Fig. 3e), such that their estimates 
can be succinctly described in terms of particular distributions over 
precision. Abstracted from a specific implementation, variable preci-
sion models6,11,39–42 identify WM resource with mean precision and 
draw individual precision values from a distribution (Fig. 3d), the key 
characteristic of which may be a variance that scales with the mean29.

As noted above, all of these models contain information about 
uncertainty, not just error. In addition to capturing the changes in 
error distribution induced by set size (as illustrated in Fig. 2b), both 
population coding23,29 and variable precision models24 have been shown 
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Fig. 2 | Tools for measuring WM uncertainty. a, A typical task testing 
orientation recall, with confidence reported on an ordinal scale. b, Increasing the 
number of items to be remembered (the set size) decreases the signal strength 
relative to noise, increasing the variability (broadening the error distribution). 
c, Even within a given set size (here, six items) error distributions can be 
decomposed on the basis of subjective confidence ratings into components 
that differ in precision. d,e, In tasks in which participants report a confidence 
interval (d), arc length is correlated with absolute error in the point estimate (e). 
f, In change detection, the optimal decision criterion depends on uncertainty. 

The x axis represents the measured change based on noisy WM representations 
in a single-item change detection task. The lines represent the probability 
distribution of the measured change on change (blue) and no-change (red) trials. 
The grey areas indicate where the optimal observer would report a change.  
When uncertainty is high, the optimal observer tolerates a larger measured 
change before reporting change. Panels a–c visualizes methods described in  
ref. 5; panels d,e visualizes results from ref. 7; panel f visualizes the method/
model proposed in ref. 11.
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to account quantitatively for the results of conditioning on confidence 
in continuous reproduction tasks, as shown in Fig. 2c. The relation-
ship between certainty and error in these models predicts that the 
long-tailed distributions of error commonly observed in WM recall 
can be decomposed on the basis of subjective certainty into individual 
distributions that differ in precision. These models also predict the dis-
tribution of confidence ratings in continuous report (Fig. 3f), account 
for performance changes with confidence in change detection tasks43 
and quantitatively reproduce error distributions on whole-report 
tasks44 (Fig. 3g) on the basis that participants choose items to report 
in decreasing order of confidence29.

A lesson emerging from these noise-based accounts of WM has 
been that computation during the retrieval stage is interesting in its 
own right and requires a non-trivial modelling step. Except in the very 
simplest tasks, retrieval is not a passive, straightforward recall of fea-
tures of memorized stimuli. Even in a delayed estimation task with more 
than one item, computations must be performed to determine which 
item in memory is indicated by the cue (see ‘Feature binding’ section 
below). In other tasks, memory-based likelihood functions associated 
with individual features need to be combined with a prior (see above) or 
transformed into a decision about a categorical global variable such as 
the presence of a target40 or of a change10–12,41,45. For example, in change 
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in a population code. Stimulus features are encoded in the activity of idealized 
neurons individually tuned to different parts of the feature space (inset). 
Recall errors arise at decoding due to limited activity amplitude and Poisson 
variability in spike counts. b, Sample-based model with stochastic variation in 
the number of samples. Recall errors arise from averaging over a limited and 
variable number of individually noisy samples. c, Signal detection model with 
correlated random noise. Recall error arises from the addition of noise to an 
underlying familiarity function that peaks at the stimulus feature. d, Model 
based on probabilistic variability in mnemonic precision. Recall errors comprise 

scale mixtures of normal distributions with differing precisions. e, Relationship 
between variability and uncertainty common to these models: memories that 
are compatible with a narrow range of stimuli (high certainty, as measured 
by likelihood width; top) correspond to point estimates with low variability 
(coloured pins; top), whereas low-certainty memories correspond to high-
variability estimates (bottom). f, Confidence ratings (from the task shown in Fig. 2a)  
can be explained as a logarithmic transformation of precision and fit jointly with 
error. g, Whole-report delayed estimation with the reporting order chosen by 
the participant. The estimate distribution gets wider for later responses (left), 
consistent with selecting items in order of increasing uncertainty (right). Panel f 
visualizes results/data from ref. 24; panel g visualizes results/data from ref. 29.
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detection, if memories are noisy, every item changes in terms of its 
internal representation, creating a hard decision problem (Fig. 2f). 
The brain might make such retrieval-stage decisions in a Bayesian way 
(that is, by inverting a generative model while minimizing a cost func-
tion). Indeed, Bayesian observer models augmented with a resource 
limitation in the encoding stage have proven successful in capturing 
WM-based decisions in quantitative detail7,10–12,40. The computations 
during WM retrieval have also been addressed in neural process mod-
els46,47, as discussed in later sections.

Resource allocation, rationality and incentives
Most modern models of visual WM allow for flexibility in how resources 
are allocated. This flexibility is necessary to account for a range of find-
ings in which observers prioritize certain memoranda over others, 
as a result of differences in their attentional salience or relevance to 
behavioural goals48–50. Control over resource allocation is also critical 
to many of the sensorimotor functions ascribed to visual WM (Box 2). 
The assumption that resources are allocated optimally to minimize 
expected error across trials has been used to quantitatively reproduce 
the observation that the average precision of an item’s representation 
increases with the probability that the item will be probed for recall6,19.

Manipulations of incentives have also been successful in modu-
lating allocation. In a multiple-item delayed discrimination task of 
spatial location, items that were marked with a pre-cue as yielding 
higher reward were remembered better51. Although in that study 
attentional priority and reward coincided, in another study reward 
improved performance even when these cues were dissociated52. 
Finally, reward-associated items are remembered better even when 
they are task irrelevant53.

These results are compatible with a structural constraint on the 
representational capacity of the WM system. Divisive normalization54 
has been identified as a possible neural basis for such a constraint, 
whereby inhibition between pools of neurons representing differ-
ent stimuli in memory implements a limit on the combined activity 
amplitude. Population coding models can account for both effects of 
set size and flexibility in resource allocation based on this principle19.

An alternative perspective is based on the theory of resource 
rationality55, which proposes that the brain maximizes task perfor-
mance while at the same time minimizing a biologically relevant cost, 
such as the cost of neural spiking. Assuming a cost that is linear in 
encoding precision, this idea can account for effects of set size and 
probe probability on precision in delayed estimation56. In this view, 
a decrease of precision with set size is not a signature of a structural 
limitation of WM, but the outcome of a rational cost–benefit analysis: 
is greater precision worth the associated cost?

The resource-rational account can be tested by manipulating the 
incentives for a task. An increased reward should shift the balance 
towards higher performance by compensating for the higher asso-
ciated cost. Delayed estimation performance did not significantly 
improve when monetary reward was higher57, nor when the total attain-
able reward was raised by increasing cue validity52. In a change detec-
tion experiment, participants who were asked to try to remember all 
items performed better than those who were asked to just do their 
best58. However, in another study, gamification of a WM task increased 
motivation but did not improve recall performance59.

Taken together, it seems that resource allocation in WM is respon-
sive to reward differences between items or locations, whereas evi-
dence for effects at the condition or task level is very limited. This might 
point to different underlying mechanisms: responsivity to inter-item 
differences might rely on neural circuits dedicated to prioritization, 
whereas responsivity to overall reward might rely on motivation. Alter-
natively, it is possible that the differences in reward were too small to 
elicit an effect.

WM limitations have also been recognized as being an impor-
tant factor in reward-based instrumental learning60. In a task in which 

participants had to learn, based on feedback, which of three responses 
was associated with each of n stimuli, with one stimulus being pre-
sented at a time, a pure reinforcement learning model failed to capture 
the effects of n and delay. A reinforcement learning model augmented 

Box 2

Sensorimotor functions of 
visual WM
Visual WM has been conceptualized as a workspace in which 
visual object representations are not only maintained but also 
manipulated (as in mental rotation), compared (as in visual search) 
or integrated with new input. WM has long been assumed to have 
a critical role in bridging interruptions of sensory input, so that 
processing does not have to start anew when the input is restored. 
In vision, common forms of interruption affecting the processing 
of objects in our environment include dynamic occlusions by other 
objects (for example, as a result of motion parallax), movements of 
the head or body that briefly take the object out of the field of view 
and whole-field interruptions in the form of blinks and saccadic 
shifts of gaze.

Saccades are the most frequent form of interruption to visual 
input, dislocating and briefly smearing the retinal image several 
times per second during natural vision. Recent studies have shown 
that information about an object obtained in sequential gaze 
fixations is integrated in a statistically near-optimal manner280–282 
and that this process relies on the allocation of limited visual WM 
resources to behaviourally relevant objects in advance of the eye 
movement283,284. Multiple-object representations can be integrated 
across a saccade, including objects that are never brought into 
foveal vision280,285; however, dynamic allocation of WM resources to 
upcoming saccade targets seems to be obligatory and to require 
the withdrawal of resources from previously fixated objects273,286–289.

WM has a broad role in supporting goal-directed movement 
(see refs. 290–292 for detailed reviews). Recent studies have 
demonstrated enhanced recall for visual items at locations relevant 
to reaching movements293,294 and also for feature dimensions 
relevant to a movement (for example, object size for grasp295). 
These benefits have been observed even for movements specified 
shortly after disappearance of the memory array, perhaps reflecting 
reallocation of WM resources supported by shifts of attentional 
focus within sensory memory.

Action planning is thought to rely on representations of spatial 
location in multiple reference frames291 (that is, the encoding of an 
object’s location relative to a stable visual landmark (allocentric 
coding) may be at least as relevant to action as its location in 
the visual field (a form of egocentric coding)). The presence of a 
landmark at both encoding and retrieval enhances the recall of 
object locations296,297, increasing precision for items near to the 
landmark in a manner consistent with integration of allocentric and 
egocentric representations of an object’s location maintained in 
independent WM stores298. The ability to supplement memory of an 
object’s individual spatial location with memory for its location in 
relation to another object, seemingly without cost, is conceptually 
similar to some descriptions of inter-item interaction and ensemble 
representation in visual WM (see main text). Future work could aim 
to synthesize these accounts.
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with a WM mechanism, consisting of a slot-like limited capacity and 
forgetting, was able to account for the data61,62. Further work should 
test alternative, resource-based models of WM within this task.

WM in a structured environment
The information we need to hold in WM in real-world situations is 
generally statistically structured and predictable. That is, unlike in 
typical WM experiments where stimuli tend to be randomly gener-
ated and unrelated to each other, when we remember information in 
a real scene, we have prior knowledge that can help to constrain our 
memories. Knowing we saw a stove on the left of our view is informa-
tive about the object that is probably on the right (it is more likely to 
be a blender than a mailbox63) and knowing the object was on a kitchen 
counter and approximately banana shaped provides a strong hint it 
may have been yellow. Thus, a critical aspect of understanding how 
we use WM in the natural world is understanding how our WM system 
uses our prior knowledge about what is present and what objects and 
features generally co-occur to structure our memory representations.

This problem can be recast as one of communication (Fig. 1): to 
store information successfully in WM, we need to communicate to 
our future selves only what is unexpected or unknown about the given 
object or scene. This view focuses on how we could optimally encode 
information if we know we will later decode it using the same statistical 
knowledge of the environment. For example, if our environment and 
body were entirely static, we would not have to encode any information 
in WM. If they were entirely unpredictable, we would have to encode 
everything. In theory, if our brain makes use of the learned regularities 
about what objects are likely to occur and co-occur, then the stronger 
our previous expectations in a given situation, the less entropy the 
stimulus has and the less we need to encode about it, and thus the easier 
it should be to store in memory.

The formal frameworks used to understand the effect of such 
knowledge on WM have thus often relied on information theoretic 
principles such as compression64,65 and rate distortion theory66,67, 
which attempt to formalize the entropy of the stimulus and the com-
munication problem faced by our memory system. Another line of 
work has formalized benefits from prior knowledge by considering 
that our memory system may encode information with respect to a 
generative model of the world that constrains the possible scenes 
we will see68–70. Storing information in memory conditioned on such 
a model decreases the entropy relative to storing it on its own, and 
so such models also help to provide frameworks for thinking about 
how our brain makes use of such prior knowledge. Such models also 
often suggest that we preferentially encode objects that are least 
consistent with our priors, to enhance how much total information 
we can remember70.

Although these models focus on conjunctions of features and 
objects, the influence of environmental statistics, as well as encoding 
items with respect to these statistics, may also be responsible for ani-
sotropies in the internal representation of individual visual features, 
such as orientation, colour and location71,72. These take the form of 
stimulus-specific variation in precision within a feature dimension 
(for example, cardinal orientations are reproduced with less variability 
than obliques) and systematic biases in reproduction and comparison 
of features (for example, reported orientations are on average biased 
away from the nearest cardinal). It has been proposed that these ani-
sotropies are an adaptation to the unequal distribution of stimulus 
features in the environment (for example, cardinal orientations are 
more prevalent than obliques in natural scenes). According to one 
expression of the efficient coding principle, encoding resources are 
preferentially allocated to more frequently encountered stimuli in 
order to maximize the information transmitted, with consequences 
for both discriminability and bias73–75. This principle can be naturally 
incorporated into population coding models of WM (Fig. 3a) via an 
optimal redistribution of tuning functions76, providing a quantitative 

account of stimulus-specific effects in memory and their interactions 
with set size.

More discrete frameworks that have traditionally dominated 
WM research have often focused on treating WM limits as a limit on 
how many independent items can be remembered3,77. Such frame-
works have generally formalized the usage of prior knowledge via the 
concept of chunking3,78. The most common conception of chunking 
in WM is entirely discrete, proposing that we learn co-occurrences 
and use these to create chunks in long-term memory. The content of 
WM is then often thought to be entirely replaced by a pointer to this 
information in long-term memory. For example, you could remem-
ber the word cow as a single pointer to your long-term conception of 
cows and then, if asked what the third letter was, reconstruct this by 
decompressing the chunk into the letters by decoding your long-term 
memory. In this framework, chunks improve performance by replacing 
to-be-remembered items with compressed representations, which 
can be decompressed when required from long-term memory3,78,79. 
A similar principle has been invoked to explain anisotropies in the 
recall of individual features, based on supplementing a detailed and 
continuous memory representation with a coarse categorical one80,81. 
In an information theoretic framework, chunking can be recast as an 
approximation to more general compression schemes (that is, chunk-
ing can be seen as a way of implementing such compression in models 
where items are treated like discrete units, but many non-discrete 
compression mechanisms are also possible65,82,83).

Qualitatively, these theories all make the same basic prediction: 
that we should be better at holding in mind information if it more 
strongly matches our prior knowledge. This seems to hold in a wide vari-
ety of situations: people are better at remembering stimuli that match 
real-world co-occurrence statistics67 or newly learned co-occurrence 
statistics65,84. They are also better at remembering stimuli that are famil-
iar than perceptually matched stimuli that are scrambled or otherwise 
do not connect to their prior knowledge85–87, and better with realistic 
objects and configurations of objects compared with simple mean-
ingless stimuli or random configurations of objects88–91. This is in line 
with classic work in verbal memory showing semantic coding in WM92.

Theories based on chunking or information theoretic principles 
like rate distortion or compression propose that we change our initial 
encoding of stimuli based on environmental regularities. However, 
better recall of stimuli that match previous experience can also arise in 
many real-world situations from an informed decoding strategy, even 
if encoding is uninformed. For example, even if someone remembered 
a scene by just randomly sampling a few objects to remember, they 
would be best served by making informed decisions when tested on 
their memory: assuming a stove is present in a kitchen will on average 
improve memory performance even if the stove was not explicitly 
encoded, since stoves are nearly always present in kitchens. Many stud-
ies testing information theoretic accounts of encoding do explicitly 
test for the coarsest versions of such strategies (for example, Brady 
and colleagues65 showed that people do not report a priori likely items 
more often when they are not present), but making precise statements 
about how much of the benefit of environmental regularities arises at 
encoding versus decoding is often impossible. Indeed, the exact pre-
dictions for how encoding should vary as a function of environmental 
regularities will vary with details of the optimization, including the loss 
function that describes the relative undesirability of different errors93. 
There are also limits to encoding flexibility94,95, in terms of what adapta-
tion of encoding strategy is possible and how rapidly it can be achieved 
in response to new information about environmental statistics.

From features to objects
A long-standing question about WM is whether its basic unit is a feature 
or an object. This question can have different meanings, all of which 
have recently been recast in the modern noise/resource view of WM. 
One meaning is whether or not different feature dimensions within an 
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object share the same resource. Using a change localization task and 
formal comparison of noisy memory models with an optimal decision 
stage, it was found that orientation and colour have independent pools 
of resource96, broadly consistent with previous results from delayed 
estimation97,98. Other findings, however, suggest that resource pools 
are not completely independent. Retrospective cues indicating the 
feature dimension to be tested in a continuous report task have been 
found to impact performance, suggesting that resources can to some 
degree be shifted across feature dimensions99–101. Moreover, a modest 
decline in performance when adding more relevant feature dimensions 
was observed in delayed comparison102 and change detection tasks103,104. 
However, it is important to note that in a noisy memory framework, a 
decline in accuracy in change detection does not necessarily imply 
reduced resource; instead, the noise added by the additional features 
could decrease the overall signal-to-noise ratio in the integration of 
information across items96.

A second meaning is whether or not an irrelevant feature of a 
relevant object is automatically represented in WM. Several stud-
ies using surprise tests for previously irrelevant non-spatial fea-
tures showed either near-chance performance (when using change 
detection tasks105,106) or very low precision (in delayed reproduction 
tasks107,108), and decoding from fMRI or electroencephalogram (EEG) 
data has shown little evidence for the maintenance of task-irrelevant 
features109,110. However, the presence of task-irrelevant features in 
memory items—and even in items merely inspected in a perceptual 
task—has been found to degrade the recall of other items to the same 
extent as task-relevant features111. Based on formal modelling of change 
localization performance, Shin and Ma96 suggested that task-irrelevant 
features of attended objects are automatically encoded, occupying WM 
resources, but they are subsequently only weakly maintained under 
the control of top-down processes, causing their representations to 
rapidly degrade.

A third meaning is whether an object takes up resources for a fea-
ture even when it is neutral with respect to that feature (for example, 
a circle is neutral for orientation), as long as the object is task relevant 
because of other features. In WM tasks in which n colours and n orienta-
tions were divided either over n two-feature objects or 2n one-feature 
objects, some such leaking away of resources to neutral features was 
observed96,97. Two further studies indicated that to prevent this it is 
sufficient for different features to share the same location, even if they 
are not fully integrated into a smaller number of objects112,113.

Theoretical proposals attempting to unify the different aspects 
of the feature/object question have included that of a hierarchically 
structured feature bundle114 and of partially packaged resource96. Fur-
ther progress will require more systematic investigation of different 
feature pairs, a reconsideration of older studies in light of the concept 
of noisy memories, and potentially favouring delayed estimation and 
delayed comparison over change detection and change localization 
as paradigms (because the latter require more assumptions about 
the decision stage).

Feature binding
Beyond memorizing individual feature values, for many tasks both 
in real life and in experiments it is necessary to maintain the corre-
spondence (binding) between multiple features of a single stimulus. 
Delayed reproduction tasks in particular require participants to recall 
the binding between cue and report features in order to give an accurate 
response when presented with the cue. Failure to accurately retrieve 
the cued target item leads to swap errors, which are reflected in a spe-
cific concentration of responses around the report feature values of 
non-target items115–117.

Our understanding of this type of error has improved substan-
tially in recent years. The frequency of swap errors depends on the 
feature (or features) used as a cue118,119, and they occur most often 
between a target and a non-target item that are similar in their cue 

feature120–124. This would not be predicted if swap errors arose from a 
failure of a separate memory system for storing the binding between 
features, as used in some traditional models125. The observations are 
instead consistent with a view that emphasizes uncertainty in memory 
representations, which applies not only to the reported feature, but 
also to the cue feature. This uncertainty can lead to a non-target item 
in memory being judged as matching the given cue, especially if the 
non-target item is similar to the target in its cue feature. Figure 4a,b 
illustrates how this mechanism can give rise to swap errors, even if the 
underlying (noisy) memory representation explicitly encodes feature 
conjunctions. Recent findings suggest that such an account based on 
variability in memory for cue features is sufficient to fully explain swap 
errors in analogue report tasks126.

Consistent with this mechanism, most current models of WM 
assume that binding between features is inherently encoded in the 
memory representation. This is implemented either through activ-
ity in conjunctive neural population codes, in which each neuron’s 
activity is modulated by multiple stimulus features17,18,47, or through 
rapidly formed synaptic connections between neurons sensitive 
for a single feature16,127. For instance, the interference model16 uses 
a two-dimensional binding space as its central WM substrate, which 
encodes feature conjunctions with limited precision and gives rise to 
swap errors dependent on cue feature similarity, as outlined above. 
This mechanism is combined with separate single-feature representa-
tions and set size-dependent background noise to give rise to different 
forms of recall errors, and can quantitatively fit experimental data 
from continuous reproduction, as well as change detection tasks128. 
Models based on conjunctive coding have likewise been successful 
at fitting behavioural results17,18, with an interesting recent exten-
sion additionally describing feature binding across multiple levels 
of visual processing129.

Among visual features, location has long been considered to 
have a special role in both perception and WM130,131. Unlike other fea-
tures, location is robustly recalled even when task irrelevant132–135, 
albeit with reduced precision136. Location is a particularly effective 
retrieval cue119, and spatial congruency between stimuli affects recall 
performance137,138.

It has sometimes been argued that binding of objects to locations 
constitutes a weaker (relational or extrinsic) binding than that between 
an object’s features, such as shape and colour139,140. By contrast, Sch-
neegans and Bays18 proposed that binding in WM, as in visual percep-
tion, is achieved through feature maps over visual space, with different 
non-spatial features of an object bound to each other only indirectly 
via their shared location. This account allows for independent resource 
pools for different non-spatial features while still using inherently 
conjunctive memory representations, and it explains patterns of 
error correlations in dual-report paradigms98,141–143. Recent work fur-
ther indicates that, for sequentially presented stimuli, presentation 
time may take a similar role to location in binding visual features144–146 
(see also refs. 17,147). However, Sone and colleagues148 criticized the 
dual-report methodology used in several of these studies18,141,144, argu-
ing that it may underestimate error correlations for different visual 
features of an object by using sequential reports. The authors found 
that a simultaneous report method revealed reliable correlations of 
memory quality for colour and orientation (although still weaker than 
those between location and other features149), which they interpreted 
as evidence that features in WM are organized at least partly in an 
object-based manner.

Feature binding in WM has also been investigated in clinical popu-
lations and older adults. Recent work shows no specific decline in bind-
ing performance associated with healthy ageing150–152, nor with most 
other clinical conditions153,154. However, a specific binding impairment 
has been observed in association with Alzheimer’s disease153,155 and has 
been proposed as a diagnostic tool to differentiate Alzheimer’s from 
other forms of dementia156.
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Multiple competing sources of bias in WM
In addition to swap errors, where one feature is inadvertently reported 
in place of another, a diverse range of influences have been identi-
fied that produce graded shifts in target feature estimates towards 
or away from other points in the feature space. For example, Golomb 
and colleagues137 found that shifting attention between memory 
items increased the frequency of swap errors, whereas attending to 
items simultaneously tended to result in reports being shifted slightly 
towards each other (Fig. 4c).

One important source of biases is the history of previously 
observed stimuli with similar features. Attempts to characterize these 
influences have identified multiple competing sources of bias, some 
attracting current representations towards preceding stimuli and 
some repulsing them away, with systematic differences in strength, 
time course and specificity157–159.

Classical adaptation effects160, exemplified by the tilt after-effect 
(Fig. 4d) and waterfall illusion, are typically repulsive and tightly spa-
tially localized and have their effects in immediate perception of 
stimuli, feeding through to WM representations. Such short-term 

adaptation may co-exist with or contribute to efficient encoding strate-
gies based on long-term environmental statistics (see above). By con-
trast, more recently identified biases associated with the term serial 
dependence161,162 are primarily attractive and appear to generalize 
across a broader range of spatial locations while specifically affecting 
stimulus features similar to those of the preceding stimuli (Fig. 4e). 
These attractive effects are typically observed only for stimulus fea-
tures maintained in WM, and grow in strength with delay interval163–165. 
One possibility is that this reflects a greater reliance on stimulus history 
when the representation of the current stimulus becomes less precise, 
following Bayesian principles166–168; in perceptual tasks, where uncer-
tainty is less, smaller attractive biases may be masked or cancelled out 
by repulsive biases associated with classical adaptation.

The attractive biases to preceding stimuli described as serial 
dependence are typically observed experimentally as influences of 
items presented on previous trials, which have therefore ceased to be 
relevant to the instructed task. By contrast, previously presented stim-
uli within the same trial, which remain relevant to the current task and 
are presumably actively maintained in WM, have been found to have a 
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repulsive influence on subsequent stimuli169–171 (Fig. 4f). It is currently 
unclear whether the mechanisms that attract recall estimates towards 
previous stimuli are inactive while those stimuli remain relevant, or are 
active but overwhelmed by stronger repulsive biases between items 
held simultaneously in memory.

Repulsion is also commonly observed between two similar 
stimuli when they are presented simultaneously169,172,173. This bias 
causes the stimuli to be reported as more distinct from each other 
than they really were, and it has has been suggested that implicitly 
differentiating memory representations in this way could serve to 
reduce inter-item confusion174. By contrast, when many items are 
held in mind, or when memories are weak for another reason175, items 
tend to be reported as more similar to each other than they really 
were69,169,172,173,176,177 (Fig. 4g). This has been explained in terms of memo-
ries being compressed (see above).

Finally, there are biases that variously attract or repel stimulus 
estimates relative to fixed points or landmarks in the stimulus space, 
some of which are evident in immediate perception (for example, 
cardinal repulsion, as discussed above; Fig. 4h), some of which develop 
during a memory delay (for example, compressive biases in spatial 
memory178) and others of which may arise at the decision stage (for 
example, reference repulsion179). A unifying theory of such biases has 
not yet been found.

Changes in WM over delay
The maintenance of information in WM over delays is imperfect, and 
the results from analogue report tasks confirm that the precision of 
individual memory representations deteriorates over time180,181. How-
ever, this effect is relatively subtle and variable182 compared with the 
strong and robust effects of set size.

The gradual deterioration of WM representations has been 
addressed in continuous attractor models (Fig. 5a). This type of model 
uses an idealized population of neurons whose tuning functions cover 
the space of possible feature values. A memorized feature is then repre-
sented by activity in a group of neurons with similar preferred feature 
values, sustained over time by recurrent excitation. Delay effects can 
be explained in these models by random drift (that is, gradual shifts 
in the subset of active neurons due to noise in neural activity)46,183,184.

Several memory decoding studies have observed gradual changes 
in encoded feature values over time that correlate with response 
errors, consistent with this theoretical account185–187. This account is 
further supported by behavioural results comparing response errors 
and latencies across different set sizes and delay conditions181, and 
is consistent with findings from signal detection analyses of behav-
ioural data indicating that the deterioration of memory is driven by an 
accumulation of internal noise188. Another study observed that drift 
over delays is not entirely random, but rather shows biases towards 
specific feature values189.

Although attractor models of WM have typically been designed to 
maintain only a point estimate of a stimulus, recent work aims to incor-
porate uncertainty as well (for example, represented in the amplitude of 
the population activity)190,191. In future work, neural models of WM could 
focus on how this richer representation is used in decision-making; 
trained recurrent networks have already proven useful to yield mecha-
nistic insights in tandem with accounts of behavioural data192.

Deterioration of memory over time may also be driven by interfer-
ence between multiple memory items193. One proposed model explains 
this effect by a combination of sharing representational resources in an 
attractor model with efficient encoding194. Another model combines 
separate continuous attractor networks, each storing a single feature, 
with a randomly connected neural network in which different feature 
representations interfere with each other to explain both set size and 
delay effects195.

Directed interactions between items, as described in the previ-
ous section, also evolve over time. In particular, repulsion between 

memorized feature values has been observed to increase with longer 
retention intervals173,174. Such interactions also occur in continuous 
attractor models as a result of mutual excitation and inhibition between 
active sub-populations46,184,196,197, although it is not clear whether these 
effects can fully account for the behavioural observations.

Dynamic neural representations
The continuous attractor models addressed in the previous section 
reflect a traditional view on the neural mechanism underlying WM, 
in which information is maintained through persistent activity in 
feature-sensitive neurons, driven by some form of recurrent excita-
tion. This yields stable representations in the state space of neural 
activities (Fig. 5b, left). Support for such a mechanism comes from 
electrophysiological studies in monkeys, in particular in delayed oculo-
motor response tasks185,198–200. Persistent activity has also been observed 
in rare electrophysiology studies in humans201,202.

However, a number of recent works have challenged various 
aspects of this view, primarily based on studies that decode memory 
content from fMRI or EEG recordings using techniques such as inverted 
encoding models203,204. In this type of study, it has often been found that 
there is little generalization in decoder efficacy between sample and 
delay period205,206, or between different phases of the delay period207–209. 
Although changes in neural representations immediately after stimu-
lus presentation may reflect transitions from perceptual and iconic 
memory210 to WM, qualitative changes in representational format dur-
ing maintenance are inconsistent with traditional conceptualizations 
of WM as implemented in attractor models. This has led to postulates 
that WM activity is substantially more dynamic than previously rec-
ognized211,212 (Fig. 5b, middle). This view is also supported by a number 
of electrophysiological studies in rodents and monkeys that found a 
reproducible sequence of activation states during the memory delay, 
rather than a single stable state205,213–215. In neural network models, it 
has been shown that both stable persistent activity and reproducible 
sequences of activation states can arise as WM mechanisms dependent 
on task demands and network parameters192.

The conflicting findings may at least in part be reconciled by recent 
studies analysing the neural coding of WM content in macaque mon-
keys. These confirmed the presence of strong temporal dynamics, 
allowing for instance the decoding of time passed since stimulus pres-
entation, but also found stable subspaces in the neural code (Fig. 5b, 
right) within which time-invariant decoding of memory content is 
possible216–219. This would, in particular, allow the read-out of memory 
via fixed synaptic weights despite changing activation states. Consist-
ent results have also been obtained in an EEG experiment in humans187.

Activity-silent WM and the focus of attention
Beyond the debate on stable versus dynamic representations, it has 
also been questioned in recent years whether continuous neural activ-
ity is necessary at all for WM maintenance. An alternative proposal is 
that at any time only a small portion of WM content that is currently 
behaviourally relevant is represented through neural activity—often 
just a single item. This active memory is sometimes equated with the 
focus of attention in previous models220,221. Other items are proposed 
to be held in an activity-silent state211 realized through mechanisms 
classically associated with long-term memory, such as rapid synaptic 
plasticity or short-term changes in neural excitability222,223.

The primary motivation for this idea is findings from the dual 
retro-cue paradigm, in which participants view two sample stimuli and 
then perform two sequential memory tests for which one sample item 
is cued. LaRocque and colleagues224,225 observed that the identity of the 
currently attended (cued) item could be decoded from neural activity 
using either EEG or fMRI recordings, but the currently unattended item 
could not (Fig. 5c). Critically, a previously unattended item became 
decodable again if it was cued for the second test, demonstrating that 
it was still held in memory. A similar restoration in the decodability 
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of memory items has also been observed following an informative 
retrospective cue226, and transiently following a transcranial magnetic 
stimulation pulse227 or a salient but task-irrelevant visual stimulus206. 
The latter result has been explained by interactions of the stimulus with 

activity-silent WM states (for example, in the form of altered synaptic 
connectivity) that elicit an identifiable impulse response in the neural 
activity (see also ref. 205 for a similar account of findings in monkey 
electrophysiology).
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of the trial, except for the effects of noise and possibly an initial transient 
phase. Middle, dynamic representation, with activity states changing along 
different trajectories for different features. Right, representation with stable 
subspaces (here in components 1 and 2), but dynamic in orthogonal spaces 
(here, component 3 reflects time). c, Time course of decoding strengths from 
fMRI data for different stimulus categories in a dual retro-cue task. The decoding 
strength for the category of a currently uncued item transiently drops to the 
chance level, suggestive of representation in an activity-silent state. d, Decoding 
strength for features of different sample stimuli in another dual retro-cue task. 
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for a currently uncued memory item. Asterisks indicate statistically significant 
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permission from ref. 227, AAAS (permission from Nathan Rose and Brad Postle); 
panel d visualizes results/data from ref. 234.
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Computational models based on activity-silent memory mecha-
nisms have accounted for neurophysiological data from WM tasks, 
including noise correlations228 and trial-to-trial variations in neural 
responses127,229. Moreover, a recurrent neural network endowed with 
short-term synaptic plasticity developed predominantly activity-silent 
mechanisms to solve WM tasks as long as these required no active 
manipulation of information230. An alternative to the standard 
activity-silent account proposes that unattended memory items are 
maintained actively but in an altered representational format231,232. 
This has also been explored in computational models233.

Several other papers have countered the claims of activity-silent 
WM. The outcomes of the decoding studies, which relied primarily 
on null results, have been called into question by work successfully 
decoding the identity of unattended items234,235 (Fig. 5d), even in data 
that had previously been used as support for activity-silent states236. 
Schneegans and Bays237 further demonstrated in a neural network 
model that restoration of decodability following an informative cue can 
also arise in a system with purely active WM states and is no evidence 
for activity-silent memory states.

Activity-silent memory states are in conflict with assumptions 
underlying commonly used methods of estimating the number of 
items held in memory from neural activity. In particular, the strength 
of contralateral delay activity in EEG data increases with memory 
load238,239, saturating at higher set sizes240, and memory load can also 
be estimated through classification methods applied to multivariate 
EEG241 or fMRI data242. It is possible that these measures arise despite 
the presence of activity-silent states (for example, due to switching 
of the active state between multiple memory items). Sutterer and col-
leagues243 tested this by comparing the strength of reconstructions 
for memorized locations from EEG data across different set sizes, 
and concluded that multiple locations are maintained concurrently 
in neural activity. In view of these results, some authors have argued 
that the findings supporting activity-silent memory simply reflect con-
tributions of classical long-term memory in WM tasks without dem-
onstrating a specific neural WM mechanism244,245. The debate about 
the activity state of WM representations is also linked to the ongoing 
question of their anatomical localization246–249, although the latter 
has generally been studied without the possibility of activity-silent 
memory in mind.

The debate on different neural WM states has parallels in the 
debate over different functional states in cognitive models, although 
caution must be taken when equating the two250. Models that assume 
that only a single item can be in the focus of attention16,220, giving it a 
privileged role in influencing visual attention, contrast with alternative 
conceptualizations in which the focus of attention can encompass mul-
tiple items251. This debate takes a more concrete form in the question of 
whether only one252,253 or multiple WM representations254,255 can serve 
simultaneously as templates for visual search. A possible resolution 
to this question may be provided by recent findings indicating that 
multiple search templates may be prepared in parallel with little cost, 
but a bottleneck arises when these templates are engaged to select 
multiple targets256. Alternatively, due to variations in noise across items, 
it may be that it is rare for more than a single item to be represented 
accurately enough to successfully guide attention257.

Another proposal is that WM is maintained by intermittent bursts 
of activity258–260, bridged by mechanisms such as synaptic plasticity222,223. 
Proponents of this model point out that the appearance of persistent fir-
ing is often an artefact of averaging across trials, which hides trial-to-trial 
variability in neural activity261. The debate on the degree of persistence 
in neural firing during WM maintenance is still ongoing262,263. Unlike the 
proposal of activity-silent memory, the intermittent activity account 
does not imply different neural mechanisms for different functional 
memory states (for example, attended versus unattended items), but 
it may explain observations of rhythmic fluctuations in the strength of 
attentional guidance between multiple memory items264.

WM versus perception and future directions
The past decade of research has brought into focus similarities and 
differences between visual WM and visual perception, two strongly 
overlapping psychological constructs studied using similar experi-
mental methods, but to a large extent by separate researchers in 
independent literatures. Many theoretical and experimental findings 
conceived of in terms of perception have counterparts in WM and 
vice versa (for example, prioritization based on stimulus salience and 
goal relevance, probabilistic inference and the use of uncertainty, 
efficient coding and influences of environmental statistics). Whereas 
the limited capacity of visual WM was once considered fundamen-
tally different in nature to the factors limiting visual perception, it is 
increasingly clear that both can be described in terms of the relative 
amplitude of signal and noise, with increasing WM load decreasing 
the signal-to-noise ratio for each stimulus in memory similarly to 
how decreasing visual contrast affects a discrimination judgement. 
Indeed, introducing perceptual or attentional bottlenecks on per-
formance seems to change error distributions in a similar way to 
increasing the set size23,265,266.

Despite these areas of similarity, it is clear that WM is much more 
than a passive persistence of sensory-invoked activity. There are unique 
challenges associated with maintaining selected elements of sensory 
information over time, independent of subsequent input, and con-
trolling what information is added, removed, replaced and updated 
in memory. Key questions for further research include the following. 
How is sensory information selected for maintenance in WM? Is the 
mechanism of selection distinct from the operation of selective visual 
attention (for example, ref. 267)? What mechanisms allow sensory input 
to be segregated from existing WM representations, or integrated with 
it, according to behavioural requirements (for example, ref. 268)? Are 
errors in long-term memory representations fundamentally differ-
ent from those in WM and perception269, or can they all be unified in 
a single model?

In answering these questions, it will be critical to move beyond 
laboratory-based studies using sparse, static displays and single 
responses to consider richer, uncertainty-based representations, as 
well as how WM is deployed during natural behaviour in everyday 
environments. While initial steps have been taken in this direction 
experimentally270–272, most computational models of WM aim only to 
capture the recall of visual stimuli with low dimensionality. The rapidly 
advancing capability of artificial neural networks to perform dimen-
sionality reduction on complex images may represent an opportunity 
to extend WM models into the real world (for example, ref. 129).
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