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Research into human working memory limits has been shaped by
the competition between different formal models, with a cen-
tral point of contention being whether internal representations
are continuous or discrete. Here we describe a sampling approach
derived from principles of neural coding as a framework to under-
stand working memory limits. Reconceptualizing existing models
in these terms reveals strong commonalities between seemingly
opposing accounts, but also allows us to identify specific points of
difference. We show that the discrete versus continuous nature
of sampling is not critical to model fits, but that, instead, ran-
dom variability in sample counts is the key to reproducing human
performance in both single- and whole-report tasks. A proba-
bilistic limit on the number of items successfully retrieved is an
emergent property of stochastic sampling, requiring no explicit
mechanism to enforce it. These findings resolve discrepancies
between previous accounts and establish a unified computational
framework for working memory that is compatible with neural
principles.

visual working memory | population coding | resource model |
capacity limits

Working memory refers to the nervous system’s ability to
form stable internal representations that can be actively

manipulated in the pursuit of behavioral goals. A classical view
of visual working memory (VWM) held that it was organized
into a limited number of memory slots, each capable of holding
a single object (1, 2). This model was subsequently modified to
allow multiple slots to hold the same object and be combined on
retrieval to achieve higher precision (3). This “slots+averaging”
model incorporated aspects of an alternative view, which holds
that VWM is better conceptualized as a continuous resource
that can be flexibly distributed between different objects or
visual elements (4, 5), accounting for set size effects in delayed
reproduction tasks (6) (Fig. 1A) and flexibility in prioritizing rep-
resentations (7). Variable precision models (8, 9) additionally
proposed that the amount of memory resource is not fixed but
varies randomly from item to item and trial to trial. An alterna-
tive approach (10) sought to explain VWM errors from neural
principles as decoding variability in population representations
(11), with the limited memory resource equated to the total neu-
ral activity dedicated to storage. Here we show that each of these
influential accounts of VWM can be interpreted within a com-
mon framework based on the statistical principle of sampling
(12–18).

Sampling Interpretation of Population Coding
We first show how a population coding model (10) can, with
some simplifying assumptions, be reinterpreted in terms of sam-
pling (Fig. 1 A–C). We consider a mathematically idealized
population of independent neurons encoding a one-dimensional
(1D) stimulus feature θ, where the amplitude of each cell’s activ-
ity is determined by its individual tuning function. Neurons are
assumed to share the same tuning function, merely shifted so the
peak lies at each neuron’s preferred feature value ϕi ,

fi(θ) = f (θ−ϕi). [1]

Discrete spikes are generated from the cells’ activity via inde-
pendent Poisson processes. If we pick, at random, any spike
generated by the neural population in response to a stimulus
value θ, we can determine the probability that it was produced
by a neuron with preferred feature value ϕ. If we assume dense
uniform coverage of the underlying feature space by neural tun-
ing curves, this yields a continuous probability distribution p(ϕ)
over the space of preferred feature values (Fig. 1C). This dis-
tribution has the same shape as the neural tuning curves and is
centered on the true stimulus value,

p(ϕ)∝ f (θ−ϕ). [2]

Thus, if we associate each spike with the preferred feature value
of the neuron that generated it (the principle of population vec-
tor decoding; ref. 19), we can interpret the spiking activity of the
population as a set of noisy samples of the true stimulus value,
drawn from the distribution p(ϕ).

Retrieval of a feature value is modeled as decoding of the
spikes generated within a fixed time window. In the idealized case
with Gaussian tuning functions, the maximum likelihood (ML)
decoder generates an estimate by simple averaging of the spike
values,

θ̂ML =
1

n

n∑
j

ϕ(j), [3]

where ϕ(j) is the preferred feature value of the neuron that
generated the j th spike.

Due to the superposition property of Poisson processes,
the number of spikes—or samples—generated by the neural
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Fig. 1. Sampling interpretation of working memory models. (A–C) A theoretical account of neural population coding can be reinterpreted as sampling.
(A) The stimulus-evoked response of spiking neurons in an idealized population depends on their individual tuning (one neuron’s tuning function and
preferred value [∗] is highlighted). (B) Probability distribution over stimulus space obtained by associating a spike with the preferred stimulus of the neuron
that generated it. (C) Precision of maximum likelihood estimates based on spikes emitted in a fixed decoding window. Precision, defined as the width of the
likelihood function (Insets), is discretely distributed as a product of the tuning precision (ω1) and the number of spikes, which varies stochastically. Assuming
normalization of total activity encoding multiple items, larger set sizes correspond to less mean activity per item. (D and E) An account based on averaging
limited memory slots can also be described as sampling. (D) Allocation of a fixed number of samples or slots (here, three) to memory displays of different
sizes. (E) Precision is discretely distributed as a product of the tuning width, ω1, and the number of samples allocated per item.

population within the decoding window is also a Poisson ran-
dom variable. If the total spike rate in the neural population is
normalized (20), or fixed at a population level γ, it implements
a form of limited resource (10). This resource is continuous—
unlike the discrete number of samples—and can be distributed
between memory items, depending on task demands (e.g., pri-
oritizing one item that is cued as a likely target). We will focus
on the simplest case, in which the total spike rate is distributed
evenly among all memory items, resulting in a mean number of
samples available for decoding each stimulus that is inverse to
the set size N . This has been shown to quantitatively capture
the set size effect in single-report delayed reproduction tasks
(Fig. 2A).

The actual number of samples available in this model for
decoding each item in a single trial, nk , is a discrete random vari-
able independently drawn from a Poisson distribution, with its
mean determined by the spike rate for that item,

nk ∼Poiss
( γ
N

)
. [4]

The neural population model can therefore be interpreted as a
stochastic sampling model.

Fixed Sampling Models
The most prominent discrete representation account of VWM,
the slots+averaging model (3), can also readily be interpreted in
terms of sampling (Fig. 1 D and E). Each slot is postulated to
hold a representation of a single item with a fixed precision, and
so provides a noisy sample of the item’s feature value (or values;
the sampling interpretation is agnostic as to feature- vs. object-
based views of VWM; refs. 21 and 22). Multiple slots, or samples,
that correspond to the same object are averaged at retrieval to
enhance the precision of the estimated stimulus feature. Thus,
the format of representation and the decoding mechanism are
identical to the stochastic sampling model. There is one critical
difference, however: The slots+averaging model assumes that
the total number of samples available for representing multiple
items is fixed, that is,

N∑
k

nk =K . [5]

This has also been the most common assumption in previous
sampling-based models in the attentional and memory litera-
ture (refs. 12–14, but see ref. 23). We will refer to this as a fixed
sampling model.
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Fig. 2. Response distributions and model fits in delayed reproduction tasks. (A) Distributions of response errors in a single-report task for a representative
participant at different set sizes (10). (B and C) ML fits of the data in A with the stochastic sampling model and fixed sampling model, respectively. (D)
Distributions of response errors in a whole-report task for a representative participant at set size four, showing how errors increase with the (freely chosen)
order of sequential report (24). (E and F) ML fits of the participant’s data with the stochastic sampling model and fixed sampling model, respectively. Fits
are based on results from all set sizes, not only the single set size shown in D.

Predictions for Precision and Error Distributions
We now consider the distribution of representational precision
in these models. For any particular set of samples, ϕ, the infor-
mation they provide about the stimulus is described by the
likelihood function, L(θ; ϕ) = pθ(ϕ|θ), equivalent to the con-
ditional probability of obtaining those samples given different
values of the stimulus. The width of the likelihood function is
a measure of uncertainty in the estimate: A set of samples with a
broad likelihood function (Fig. 1 C, Bottom Inset) is compatible
with many different feature values, whereas a narrow likelihood
function (Fig. 1 C, Top Inset) identifies a value more precisely.
While a pattern of samples may have a sharp likelihood function
with a peak far from the true estimate (a kind of “false alarm”),
statistically, this is unlikely.

If the sample values follow a normal distribution with variance
σ2 centered on the true stimulus value, then the likelihood func-
tion is also normal, with a width that depends only on the number
of samples available for decoding,

L(θ;ϕ)∝φ
(
θ; θ̂ML,

σ2

nk

)
. [6]

Furthermore, for a specified number of samples, the ML esti-
mate is distributed around the true stimulus value as a normal
with the same width as the likelihood,

θ̂ML|nk ∼N
(
θ,
σ2

nk

)
. [7]

This correspondence between uncertainty, as expressed in the
likelihood width, and trial-to-trial variability is not universal, but
does apply to all of the models considered in this study, and jus-
tifies defining the precision of an individual estimate (which we
will denote ω) as the precision of its corresponding likelihood
function (see SI Appendix, Fig. S1 for a detailed illustration).

Adopting this definition explicitly (see also refs. 25 and 26) allows
us to treat precision as a random variable with a defined proba-
bility function, describing variation in the reliability of estimates
while also predicting the distribution of errors across trials. This
will prove critical in fitting data from whole-report tasks (Fig. 2D
and below).

For the stochastic sampling model based on population cod-
ing, likelihood precision has a Poisson distribution (Fig. 1C),
scaled by the precision of a single sample which is determined
by the neural tuning function, ω1 = 1/σ2,

ω

ω1
∼Poisson

( γ
N

)
. [8]

Example distributions of decoding error are shown in Fig. 2 B
and E, where we have made a transition from 1D Euclidean
to a circular stimulus space, corresponding more closely to
the feature dimensions (e.g., orientation, hue) commonly used
experimentally. The distribution of errors can be described as a
scale mixture of normal distributions with precision proportional
to the sample count (SI Appendix, Fig. S1; due to the circular
stimulus space, this is a close approximation rather than exact:
see SI Appendix, Supporting Information Text). The dispersion
of errors increases with decreasing activity (e.g., as a result of
increasing set size; Fig. 2B), and the distribution deviates from
normality, with this effect being particularly evident at lower
activity levels (blue curve) where long tails are observed.

For the fixed sampling model, making the common assumption
that samples are distributed as evenly as possible among items (9,
27), we obtain a discrete distribution over, at most, two precision
values (Fig. 1E), which are multiples of the precision of one sam-
ple, ω1. As in the stochastic model, mean precision is inversely
proportional to set size, but, because the distributions over preci-
sion differ, the fixed and stochastic models make distinct, testable
predictions for error distributions (Fig. 2).
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Response Errors Discriminate between Models
We tested the ability of stochastic and fixed sampling models
to capture response errors in delayed reproduction tasks (SI
Appendix, Fig. S2). We fit the models to a large dataset of single-
report tasks originating from different laboratories (SI Appendix,
Table S1) and also to a set of whole-report experiments (24), in
which participants reported the feature values of all items in a
sample array, either in a prescribed random order or in an order
freely chosen by each participant on each trial. While only a sin-
gle study, the whole-report results include information regarding
correlations in errors between items represented simultaneously
in VWM that could differentiate the models. On free choice tri-
als, we assumed that participants gave their responses in order
of decreasing precision (corresponding to decreasing number of
samples and increasing likelihood width). This assumption is sup-
ported by previous findings that humans have knowledge about
the uncertainty with which individual items are recalled (8, 25).

Overall, the stochastic model fit data substantially better than
the fixed sampling model for both single-report (Fig. 3A; dif-
ference in log likelihood per participant, ∆LL = 16.3 ± 2.37
[M± SE]) and whole-report tasks (Fig. 3B; ∆LL = 162 ± 13.6),
indicating that stochasticity is critical for capturing behavioral
performance (see also SI Appendix, Fig. S3). The response error
distributions in the whole-report task with freely chosen response
order have previously been argued to provide evidence for a fixed
item limit (24), since they approach uniform distributions for the
later responses at high set sizes (Fig. 2D; see SI Appendix, Figs. S4
and S5 for full behavioral results and model fits). However, this
qualitative observation is also predicted by the stochastic sam-
pling model with responses ordered by precision, as the lowest
precision retrievals will be based on few, or no, samples (Fig. 2E).
Quality of fits could be further improved by taking into account
deterioration of recall precision with increasing retention inter-
vals (SI Appendix, Figs. S3J and S5), modeled as random drift of
encoded feature values over time (28) (SI Appendix).

In contrast, the quantitative changes in error distribution with
response order and set size were relatively poorly fit by the fixed
sampling model (Fig. 2F). In particular, when the set size exceeds
the fixed sample count, each item is represented by either one or
zero samples, so this model cannot reproduce the graded decline
in precision with response order that is also present in individual
participants’ data (and does not merely arise at the group level
due to averaging across participants with different capacities).

We tested two intermediate model versions in order to further
dissociate the specific aspects in which the fixed and stochastic
sampling models differ, and determine the significance of each
for capturing human performance. In the random–fixed model,
the total number of samples was fixed but distributed randomly
between items. This model provided an improved fit to data com-
pared to the fixed model with even allocation (moderately for
single-report, ∆LL = 3.07 ± 1.10; strongly for whole-report,
∆LL = 112 ± 11.9), but was still substantially worse than the
stochastic model in both cases (single-report, ∆LL = 13.2 ±
2.24; whole-report, ∆LL = 50.4 ± 7.03). In the even–stochastic
model, the total number of samples was a Poisson random vari-
able, but the samples were distributed as evenly as possible
between items. This model achieved a better fit to single-report
data than the stochastic model with independent sample counts
for each item (∆LL = 3.57± 0.697), but provided a much worse
fit to whole-report data (∆LL = 21.4 ± 4.12). Combining evi-
dence across all participants and tasks, the stochastic model with
independent sample counts was strongly preferred over this and
the other alternative models (total ∆LL > 1,450; Fig. 3C).

Generalizing the Stochastic Model
For the models examined above, typical fitted parameters indi-
cate that estimates are based on relatively small numbers of

samples (e.g., mean of∼13 samples based on fits to single-report
data). One result is that the precision of decoded estimates could
take on only a limited set of possible values, and error distri-
butions reflect a discrete mixture of distributions with different
widths. From a neural perspective, while consistent with the
remarkable fidelity with which single neurons’ activity encodes
visual stimuli (29, 30), such small sample counts nonetheless
seem unlikely when interpreted as spike counts (see Toward Bio-
physically Realistic Models). To investigate whether discreteness
and/or low numbers of samples are important for reproducing
human performance, we therefore implemented a generalization
of the stochastic model in which the number of samples was free
to vary.

The distribution over precision values in the generalized
stochastic model was obtained as a scaling of the negative
binomial distribution,

ω

ω1p
∼NegBin

(
γ

N

1

1− p
, p

)
. [9]

This distribution has previously been proposed to model neural
spiking activity (31), and it retains the characteristic relationship
between mean and variability in the scaled Poisson distribution:
The Fano factor (the ratio of variance to mean) is constant, equal
to the value of a single sample, Var[ω]/E[ω] =ω1. This distin-
guishes the stochastic models from the fixed sampling model,
where the Fano factor is at or close to zero (mean ∼0.25 of ω1

based on ML parameters and typical set sizes) and varies in an
idiosyncratic manner between set sizes, due to the varying com-
binatorial possibilities of allocating a fixed number of samples to
a fixed number of items (Fig. 3D, purple).

The parameter p in the generalized stochastic model controls
the discretization of the precision distribution: p = 1 corre-
sponds to the Poisson model described above and illustrated
in Fig. 4A (strictly, Eq. 8 is the limit of Eq. 9 as p→ 1),
while p< 1 corresponds to a stochastic model with a greater
mean number of samples, n̄ = γ/p, each with a lower individ-
ual precision, ω1p. The mean and variance in precision (E [ω] =
ω1γ/N and Var [ω] =ω2

1γ/N ), and thus also the Fano factor,
are independent of the discretization p. Examples of precision
distributions with different discretizations are shown in Fig. 4 B
and C.

As the discretization parameter becomes very small (p→ 0),
the number of samples becomes very large, and the distribution
of precision described by Eq. 9 approaches a continuous function
(Fig. 4D and SI Appendix), specifically the Gamma distribution,

ω∼Gamma
( γ
N

,ω1

)
. [10]

Two previous studies (8, 9) independently proposed that a
continuous scale mixture of normal distributions with Gamma-
distributed precision provided a good account of VWM data,
but did not provide a theoretical motivation for this choice of
distribution. In particular, ref. 9 proposed distributing precision
as Gamma(J̄1/N

α, τ), with J̄1, τ , and α as free parameters.
With α= 1, this is identical to Eq. 10 (see SI Appendix for
results regarding this parameter). We can now explain Gamma-
distributed precision as a limit case of the stochastic sampling
model with large numbers of low-precision samples.

Fig. 3 E, Top shows the results of fitting the generalized
stochastic model with different levels of discretization, p, to the
single-report dataset. The best fit was obtained with a discretiza-
tion roughly one-third that of the Poisson model, p = 0.39. How-
ever, varying discretization produced differences in fit an order
of magnitude smaller than those between fixed and stochastic
sampling (varying by ∼1.5 versus ∼15 log likelihood points).
Fitting the same model with p as a free parameter that could
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Fig. 3. Model comparison based on single- and whole-report data. (A) Mean difference in log likelihood of each model from the stochastic sampling model
(with independence between items), for a benchmark dataset of single-report experiments. More positive values indicate better fits to data. Error bars
indicate ±1 SE across participants. (B) The same comparison for a set of whole-report experiments. (C) Total difference in log likelihood between models
across single- and whole report experiments. (D) Fano factor (ratio of variance to mean) of precision distribution. A constant Fano factor is characteristic of
the stochastic model and contrasts with the varying Fano factor (dependent on set size and number of samples) in fixed sampling. (E) Mean difference in
log likelihood for differing levels of discretization in the generalized stochastic model (Top), and number of participants best fit with each discretization
level (Bottom). Differences in log likelihood are plotted relative to the maximum discretization (p = 1; Left) corresponding to the standard stochastic model
with Poisson-distributed precision. Lower discretization (p< 1) corresponds to more samples each of lower precision, converging to a continuous Gamma
distribution over precision as p approaches zero (Right). All models have the same number of free parameters and include a fixed per-item probability of
swap errors (SI Appendix).

vary between participants, we found that ML estimates of dis-
cretization were very broadly distributed (Fig. 3 E, Bottom),
with a majority of participants (72%) best described by a sam-
pling model with less discreteness than the Poisson, and a
minority (18%) better captured by the continuous limit (p→
0) than any discrete value of p we tested (as low as 0.0001,
corresponding to ∼100,000 samples). Formal model compari-
son was equivocal with respect to an advantage of including
the discretization parameter in comparison to either the Pois-
son model (i.e., p = 1; difference in Akaike Information Cri-
terion, ∆AIC = −0.61± 0.49; difference in Bayesian Informa-
tion Criterion, ∆BIC = +4.2± 0.46; negative values favor the
added parameter) or the continuous Gamma model (i.e., p→
0; ∆AIC = −3.3± 0.93; ∆BIC = +1.5± 0.89). Overall, these
results do not allow strong conclusions to be drawn regarding

the discreteness of sampling, which has relatively little effect on
error distributions (Fig 4, Insets) or the quality of fits.

Probabilistic Item Limits
In the fixed sampling model, at higher set sizes, a meaningful pro-
portion of estimates are random “guesses” based on no samples
(Fig. 5 A and B). Specifically, if an estimate was generated for
every item in the memory array, then, as set size N increased, the
number of estimates based on at least one sample, Sω>0, would
reach a maximum at the fixed total number of samples,

lim
N→∞

Sω>0 =K . [11]

This is a trivial consequence of sharing out a fixed number of
samples evenly between items.
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Fig. 4. Precision distributions in the generalized stochastic model, for
different levels of discretization, p, and different set sizes. (Insets) Construc-
tion of the corresponding distributions of response error (for set size eight),
with thin lines showing normal distributions with different precisions incre-
mentally accumulated in ascending order (magenta to blue). (A) Example
of discrete Poisson-distributed precision values (p = 1). For typical ML
parameters, estimates are based on a small mean number of samples (here,
γ = 12), each of moderate precision (ω1 = 1.5). (B and C) With decreasing dis-
cretization (p< 1), estimates are based on larger mean numbers of samples,
and discrete precision values are more finely spaced. (D) In the limit as dis-

In the stochastic model with Poisson variability (p = 1), the
number of samples available for each item varies probabilisti-
cally and independently of the other items. There is, again, a
probability of making an estimate based on zero samples,

Pr(ω= 0) = exp
(
− γ

N

)
, [12]

and the number of nonrandom retrievals in a set of N items has
a binomial distribution,

Sω>0∼Bin
(
N , 1− exp

(
− γ

N

))
. [13]

As set size increases, the mean number of estimates based on
at least one sample reaches a maximum at the expected total
number of samples (Fig. 5 C and D). However, unlike the fixed
sampling model, this limit is probabilistic, and (as illustrated
in Fig. 5C) the actual number will vary from one set of mem-
ory items to the next, converging to a Poisson distribution for
large N ,

lim
N→∞

Sω>0∼Poisson(γ). [14]

As we increase the expected number of samples by reducing
the discretization, p, the probability of zero samples falls to
zero: Pr(ω= 0) = pγ/(N (1−p)). However, if we choose a preci-
sion threshold that is less than or equal to the base precision
ω1, it can be shown that the mean number of items with above-
threshold precision converges to a finite positive number at large
set sizes (SI Appendix). This saturation is illustrated for differ-
ent levels of discretization and various precision thresholds in
Fig. 5 E–H.

Item limits or “magic numbers” (2, 24, 32) are usually consid-
ered synonymous with slot-based accounts, occurring when some
items must go unrepresented because other items have filled the
available capacity. The present results show that a probabilis-
tic item limit, that is, an upper limit on the average number of
items successfully retrieved that is not exceeded at any set size,
can arise even when the probability of success for one item is
independent of each other item. This holds true in the Poisson
sampling model if we define success as obtaining one or more
samples, but also more generally, even in a continuous model,
if we define success as exceeding a threshold level of precision
in estimation. Note, however, that the item limit does not, in
general, have a simple relationship to the underlying number of
samples. For example, the probabilistic limit at approximately
five items in Fig. 5E is obtained from a model with a mean of
24 samples.

Toward Biophysically Realistic Models
The idealized description of population coding on which we
based the stochastic sampling model overlooks a number
of important considerations in order to reveal relationships
between cognitive and neural-level accounts of VWM. For
instance, the statistics of spike counts in the neural system often
deviate from the Poisson distribution assumed in the original
population coding model in that they are “overdispersed” (i.e.,
Fano factor of >1). Such an overdispersion in the sample count
also occurs in the generalized stochastic model as the discretiza-
tion p decreases (in order for the Fano factor of the precision
distribution to remain constant, the Fano factor of the sample
count has to increase). Spike counts in visual cortical neurons
typically show a Fano factor in the range 1.5 to 3 (e.g., ref. 33),

cretization falls to zero, the mean number of samples becomes infinite, and
the distribution over precision approaches a continuous Gamma distribu-
tion. The ratio of variance to mean precision (Fano factor) is fixed (at ω1 =
1.5) across all set sizes and levels of discretization.
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Fig. 5. Item limits in sampling models. For each model, A, C, E, and G show how the probability distribution of the number of items recovered with greater
than zero precision (A and C; greater than a fixed threshold for E and G) changes with set size (color coded, increasing blue to red; discrete probability
distributions are depicted as line plots for better visualization). B, D, F, and H plot the mean number of items with above-threshold precision as a function
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corresponding, in our model, to discretization p in the range 0.33
to 0.75.

In real neural populations, there is also considerable variability
between individual cells’ tuning curves (34). Due to this hetero-
geneity, neurons differ in the amount of information each spike
provides about a stimulus. From a sampling perspective, this
means that estimates are based on samples that vary in precision,
and this has the effect of “smoothing out” the discrete distri-
bution of precision values predicted by the stochastic model (SI
Appendix, Fig. S6). This has similar consequences for estimation
error as decreasing p in the generalized model. We fit the single
report data with a variant of the population model with random
variability in the neurons’ tuning curves (affecting baseline activ-
ity, gain, and tuning curve width, as well as adding heterogeneity
in the coverage of the feature space by neural tuning curves; SI
Appendix), scaled by a global heterogeneity parameter ν. Incor-
porating biologically realistic heterogeneity into the population
model improved fits to data (∆AIC = 8.3 ± 1.8, ∆BIC = 3.4 ±
1.7 compared to the stochastic sampling model). The mean het-
erogeneity parameter in the ML fits was ν = 0.66± 0.08, where
ν = 0 means no heterogeneity, and ν = 1 was approximately
matched to heterogeneity of orientation-selective neurons in
recordings from primary visual cortex (34).

Finally, spikes in real neural populations are not independent
events as assumed by the sampling interpretation, but rather are
correlated within and between neurons. This will tend to result
in deviations from the simple additivity assumed by sampling.
An implementation of short-range pair-wise correlations in the
heterogeneous population model (see SI Appendix for details)
greatly increased the numbers of decoded spikes required to
reproduce behavioral data (on average, 168 times higher), with-
out changing quality of fit (∆AIC/BIC = 0.045 ± 0.28). We
note, however, that the exact consequences of spike correla-
tions for decoding depend on details of correlation structure that
are difficult to measure experimentally (35–37), and suboptimal
inference (in the form of a mismatched decoder) may play an
important part (38).

Discussion
Taking, as a starting point, a mathematical idealization of the
way neural populations encode information, we have shown
that retrieval of a visual feature from working memory can be
described as estimation based on a stochastically varying number
of noisy samples. Two other influential models of VWM can be
reconceptualized in the same framework: The slots+averaging
model, because it modified the original slot model to allow multi-
ple representations with independent noise, is directly equivalent
to a sampling model with a fixed number of samples (13). And
the variable precision model (8, 9) constitutes the continuous
limit of a sampling model as samples are made less precise
and more numerous, while maintaining the fixed proportional-
ity between the variance and mean of precision in the decoded
estimate.

Formulating all three models in the same mathematical frame-
work (a formal “unification”) allowed us to pinpoint specific
differences between them. We determined the effect of these
differences on the models’ ability to account for human behav-
ior by fitting multiple variants of the sampling model to a large
database of delayed reproduction tasks. We found that stochas-
ticity both in the total number of samples and in their distribution
among items has a major impact on the quality of fit, with the best
fits obtained if the number of samples is drawn randomly and
independently for each item in each trial. Note that this form of
stochasticity is poorly captured by the concept of memory “slots,”
because of the implication that a slot occupied by one item leaves
fewer slots available for other items—this would predict depen-
dencies between items in whole report that were not supported
experimentally.

On the other hand, contrary to the assumptions of continu-
ous resource models, we did find limited support for discreteness
of memory representations (3). The fully continuous model with
Gamma-distributed precision proposed in previous studies pro-
vided fits to data that were, overall, a little worse than the
discrete Poisson model, in both single- and whole-report tasks
(SI Appendix). When we attempted to fit discretization as a
free parameter, however, we found that ML estimates varied
widely between participants, and many were best fit by contin-
uous or near-continuous versions of the generalized stochastic
sampling model. So, while discreteness in memory representa-
tions is plausible—even inevitable if based on discrete spiking
activity—recall errors do not provide strong evidence for any one
particular level of discreteness, or, as a corollary, any particular
mean number of samples.

Our findings further highlight the need to distinguish between
two concepts that have previously been elided: discreteness in
representation and discreteness in allocation. In the stochas-
tic sampling model, the resource underlying capacity limits in
VWM is equated with the mean number of samples (or the
mean spike rate in the population coding interpretation), which
can be distributed among items in a continuous fashion, even
though the consequent number of samples obtained by each
item is a discrete integer. This view on memory resources was
strongly motivated by studies showing that prioritized items can
be represented more precisely in VWM, at the cost of decreased
precision for other items (7, 39–42). The stochastic sampling
model can account for such findings through an uneven distri-
bution of resources among memory items, corresponding to a
higher mean number of samples for some items at the cost of a
lower mean for other items. The actual number of samples avail-
able on an individual memory retrieval varies randomly about the
item’s mean. In the neural population model, this mechanism has
previously been shown to successfully reproduce data from tasks
in which one item is cued as the likely target (10).

While the stochastic sampling model is based on a highly
idealized implementation of population coding, it nevertheless
provides a link to a concrete neural mechanism that could form
the basis of VWM performance. We have shown that adapting
this model to achieve a higher degree of biophysical realism—by
introducing heterogeneity in neural tuning curves and correlated
spiking activity—improved the quality of fit to behavioral data. It
has recently been shown that more neurally realistic population
coding models preserve the key characteristics of the idealized
model, and that signatures of neural tuning may even be visible
in behavioral data (43).

Our results also provide a link between models of working
memory used in the psychological literature and more bio-
physically detailed neural models such as continuous attractor
networks (44–46), whose greater complexity typically precludes
quantitative fits to behavioral data. These models are, likewise,
based on principles of population coding and emphasize the
role of neural noise in explaining variability in working mem-
ory performance. They are capable of producing probabilistic
item limits similar to those described here, but it remains unre-
solved how these models could account for the graded variations
in recall fidelity that we have found to be essential for capturing
human behavioral performance.

In keeping with most previous work on VWM limits, we have
not here attempted to reproduce the variations in bias and pre-
cision that are observed for different feature values, exemplified
by the finding that cardinal orientations can be reproduced with
greater precision than obliques. However, previous work has
shown that these effects can be simply and elegantly captured
within the population coding framework via the principle of effi-
cient coding (47–49). The idea is that neural tuning functions
are adapted to the stimulus statistics of the natural environ-
ment in such a way as to maximally convey information in that
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environment (effectively by distributing neural resources pref-
erentially to the most frequently occurring stimulus features).
Although it should be possible to formulate this model as a
modification of stochastic sampling, without reference to neu-
ral populations, it seems that the modifications required would
not have a natural explanation within the sampling framework.
These observations, and the results of incorporating heterogene-
ity described above, illustrate the value of connecting abstract
cognitive models to neural theory.

We also did not address here the question of how individual
features of a visual stimulus are bound together, which forms
another point of contention in the debate on the format of VWM
representations. In the model fits, we allowed failures of binding
memory in the form of swap errors to occur with a fixed rate,
although taking into account similarity of items with respect to
the cue feature is likely to improve model fits (50, 51). While the
discrete memory representations in slot models have tradition-
ally been associated with a strongly object-based view (1), the
sampling framework is agnostic as to whether objects or features
are the units of VWM storage. Both views are compatible with
the population coding interpretation, depending on whether the
neurons in question are sensitive to a single feature (52) or a
conjunction of features (51, 53).

A recent proposal that VWM errors can be explained in terms
of a perceptual rescaling of stimulus space can also be expressed
in terms of population coding, with some minor differences from
the version presented here (see ref. 54 for details and discussion).
In particular, the idea of retrieval based on normally distributed
“memory-match” signals maps exactly onto an idealized popula-
tion code with continuous-valued activity and constant Gaussian
noise (51, 55). This predicts a continuous distribution over preci-
sion, not dissimilar to the Gamma distribution. Continuousness
in representation does not appear a necessary component of this
account, however, and it should be possible to reformulate it with
arbitrary levels of discreteness, as in our generalized stochastic
model.

There are other models of working memory that address
capacity limits without explicitly postulating a limited memory
resource (56). Some accounts stress the importance of memory
decay over time, and active rehearsal to counteract this decay
(57, 58). These theories do not have a clear analogue in the
sampling framework, although effects of retention time have
been incorporated into the neural population model (28). Other
accounts have sought to explain capacity limits by interference
between different memorized items (59). While the sampling
framework does not explicitly address interference, the effect of
normalization could be described as a form of nonspecific inter-
ference between items. A model of feature binding based on the
neural population model shows some notable congruencies with

an interference account of VWM, and both models make simi-
lar predictions regarding swap errors (50, 51). Further research
will be needed to determine the exact relationship between these
models.

Taken together, our results reveal a surprising convergence
between prominent models of VWM. Despite the fact that these
competing models were independently motivated by different
behavioral and neural findings, they can be expressed within
the shared formal framework of sampling, which reveals spe-
cific distinguishing factors as well as shared general principles.
This convergence gives cause for confidence that the stochastic
sampling model captures key characteristics of VWM and will
provide a solid foundation for future research.

Materials and Methods
We fit computational models of VWM to behavioral data from a large
dataset of delayed estimation experiments. The dataset included 15 indi-
vidual single-report experiments (SI Appendix, Table S1; see SI Appendix,
Supporting Information Text for inclusion criteria), as well as four whole-
report experiments (SI Appendix, Table S2). Each model defines a parame-
terized distribution of response probabilities given the true feature values
of the target and nontarget items in each trial (SI Appendix). For fits to
whole-report data, we determined the probabilities of obtaining the given
combination of responses within a single trial, taking into account the cor-
relations of recall precision between different items within a trial predicted
by each model.

We obtained an ML fit of each subject’s data for each model. The stochas-
tic sampling, fixed sampling, and continuous sampling (Gamma) model, as
well as the fixed–random and stochastic–even variants, each have three free
parameters (including one parameter for the probability of swap errors). We
fit these to both the single-report and whole-report data using the Nelder–
Mead simplex algorithm (see SI Appendix for details). The generalized
stochastic model and the neural population model with heterogeneous tun-
ing curves have four free parameters each. For these models, we employed
a grid search to obtain fits only of the single-report data (fitting them to
whole-report data was not computationally feasible). We further evaluated
model variants employing a more accurate method for ML decoding for cir-
cular feature spaces (rather than the Gaussian approximation used for fits
reported in Response Errors Discriminate between Models), models without
swap errors, models with an additional free parameter for the power law in
set size effects, and models with a temporal decay of memory precision over
varying response delays in the whole-report experiments (SI Appendix).

Data Availability. Data and code associated with this study are publicly
available in Open Science Framework (60).
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Supporting Information Text

Behavioral data

To evaluate different models of visual working memory, we compared the quality of model fits for a large set of behavioral data
from continuous report tasks. This dataset is compiled of 11 experiments with over 130,000 trials in total. We included available
data from published delayed reproduction experiments (either single-report or whole-report tasks; Fig. S2) that have the
following characteristics: They test recall performance for at least two different set sizes with a fixed delay duration, all items
are presented simultaneously and are equally likely to be tested, and the reported feature is either color or orientation. The
target item can be indicated either by a location cue or a categorical color cue. The dataset for single-report tasks (Table S1)
is similar to the dataset used in a previous model comparison (1), but we excluded experiments from two studies that have in
the meantime been retracted, and added several more recent studies. We also fit behavioral data from four whole-report tasks
(Table S2), in which participants had to report the feature values of all items presented in the sample array, with the order of
responses either freely chosen by the participant, or determined randomly by the experiment software (2). In the whole-report
tasks, items were always cued or selected via their location.

Models

General assumptions and notations. For a single trial in a continuous report task, we denote the set size of the memory sample
array with N , and the feature values of the sample items with θ = (θ1, . . . , θN ). For classical continuous report tasks with a
single report, we denote the reported feature value with θ̂. For whole-report tasks, the sequence of reported feature values is
θ̂ = (θ̂1, . . . , θ̂N ).

Each model defines a response probability distribution p(θ̂|θ) assuming that the response is generated based on a sample
item with true feature value θ. For all model fits, we incorporate swap errors, which we found to consistently improve the
quality of fits (see Section Excluding swap errors). We assume that response distributions around the selected feature value are
identical for target and non-target features, and that the probability of reporting a non-target feature increases linearly with
set size, with each non-target item having an equal probability pNT of being used as the basis for response generation (these
assumptions are of course not tenable for very large N , but suffice for studies in our dataset, with N ≤ 8). For the response θ̂i
corresponding to a cued item θi, we then obtain the probability distribution

p(θ̂i|θ) = pTp(θ̂i|θi) + pNT
∑

j∈{1,...,N},j 6=i

p(θ̂i|θj), [1]

where pT = 1− (N − 1)pNT is the probability that the response is based on the feature value of the target item.
In the whole-report tasks with freely chosen response order, we assume for all models that responses are ordered by precision

(either expressed as the number of samples assigned to them or as a continuous precision value), starting with the highest
precision item. We further assume that this ordering is still maintained if a swap error occurs. We reason that the item to
report is selected based on the precision with which its reported feature value is represented, and a swap error occurs when the
location of that item is chosen incorrectly. We consider this to be more plausible than the possibility that a location is selected
first based on the precision of the associated feature value, and then a different (lower precision) feature value from a different
item is reported.

Stochastic sampling model. The stochastic sampling model assumes that each memorized feature value is represented by a
varying number of discrete samples with fixed precision. It can be derived as an idealization of neural population coding. The
free parameters of this model are the sample precision ω1 and the mean total number of samples γ. The number of samples that
contributes to the representation of each individual item is drawn independently from a Poisson distribution with mean γ/N .
The resulting response distribution is then a mixture of von Mises distributions with different precisions, each corresponding to
a certain number of samples and weighted with the probability of obtaining that sample count,

p(θ̂|θ) =
∞∑
k=0

PrPoisson

(
k; γ
N

)
φ◦(θ̂; θ, κ(kω1)). [2]

Here, PrPoisson is the Poisson distribution,

PrPoisson(k;λ) = λke−λ

k! , [3]

and φ◦ is the von Mises distribution,
φ◦(θ̂; θ, κ) = 1

2πI0(κ)e
κ cos(θ̂−θ). [4]

The term κ(ω) is the concentration parameter that yields a von Mises distribution with precision ω. With precision expressed
as Fisher Information (3), the corresponding value κ can be obtained by numerically inverting the relationship ω = κ I1(κ)

I0(κ) . In
is the modified Bessel function of the first kind. For fitting the model to data, we only consider sample counts k within a range
that covers the cumulative probabilities of the Poisson distribution from 10−5 to 1− 10−5.

We note that the linear scaling of precision with the number of samples that we have assumed here is only an approximation
of the exact distribution of ML estimates in circular space. We implemented the exact method (4) as a variant for all sampling
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models, and describe results of a comparison between the different variants in Section Full maximum likelihood decoding for
circular feature spaces.

In the whole-report task with random response order, the stochastic sampling model predicts that there are no response
correlations, because the number of samples is drawn independently for each item. The response distribution for this case is
given by

p(θ̂|θ) =
N∏
i=1

p(θ̂i|θ), [5]

where p(θ̂i|θ) is the probability distribution including swap errors as defined in Eq. 1.
In the free response order condition, responses are ordered by precision, which is directly proportional to the number of

samples that represent each item. This sorting induces positive correlations between response errors for consecutive responses
within a trial. To compute the response probability for this condition, we determine all possible ordered sequences of sample
counts λ = (λ1, . . . , λN ), λi ≥ λj ∀ i < j. The probability that each such sequence of sample counts will be generated by the
model is

Pr(λ) =
max(λ)∏
k=0

PrPoisson

(
k; γ
N

)nk(λ)
(
N −

∑k−1
j=0 nj(λ)

nk(λ)

)
, [6]

where nk(λ) is the number of entries in λ with λi = k. The probability distribution for a sequence of responses (taking into
account swap errors) is then

p(θ̂|θ) =
∑
λ

Pr(λ)
N∏
i=1

pTφ◦(θ̂i; θi, κ(λiω1)) + pNT
∑

j∈{1,...,N},j 6=i

φ◦(θ̂i; θj , κ(λiω1))

. [7]

For the implementation, we consider only sample counts k with PrPoisson(k; γ
N

) ≥ 10−5, and we exclude the least likely sequences
λ up to a cumulative probability of 10−3.

Fixed sampling model. The fixed sampling model assumes that a fixed number K of samples, each with a fixed precision ω1,
is distributed as evenly as possible among the memory items in each trial. This model is mathematically equivalent to the
slots+averaging model (5). We note that the slot concept is commonly associated with an object- rather than feature-based
view of working memory storage, but the sampling interpretation is agnostic with respect to this distinction.

The response probability distribution for the fixed sampling model is given by

p(θ̂|θ) = K mod N
N

φ◦

(
θ̂; θ, κ

(⌈
K

N

⌉
ω1

))
+
(

1− K mod N
N

)
φ◦

(
θ̂; θ, κ

(⌊
K

N

⌋
ω1

))
. [8]

For the whole-report task, we again assume that responses are ordered by sample count. In the free response order condition,
the response probability distribution is described by

p(θ̂|θ) =
N∏
i=1

p(θ̂i|θ) [9]

with

p(θ̂i|θ) =
{
φ◦
(
θ̂i; θ, κ

(⌈
K
N

⌉
ω1
))
, if i ≤ K mod N

φ◦
(
θ̂i; θ, κ

(⌊
K
N

⌋
ω1
))
, otherwise.

[10]

In the random response order condition, the fixed sampling model predicts negative correlations between response errors in a
single trial (because having more samples for one item means fewer samples are available for others). We determine all possible
sequences of sample counts λ = (λ1, . . . , λN ), (λi =

⌊
K
N

⌋
∨ λi =

⌈
K
N

⌉
)∀i,

∑N

i=1 λi = K. Each such sequence will occur with
equal probability Pr(λ) =

[(
N

K mod N

)]−1. The response probability p(θ̂|θ) can then be expressed in the same way as in Eq. 7.
We tested the fixed sampling model (as well as the variant with random allocation described below) for values of K in the

range (0, 25), going substantially beyond the typical estimates of three or four memory slots to ensure that model comparison
results were not biased by a limited parameter range.

Fixed sampling model with random allocation. As a variant of the fixed sampling model described above, we considered a
model in which the total number of samples, K, is fixed, but each sample is randomly and independently assigned to one of the
N memory items with equal probability. The probability of obtaining a certain number k of samples for a single item is then
given by the binomial distribution,

PrBin

(
k;K, 1

N

)
=
(
K

k

)( 1
N

)k(
1− 1

N

)K−k
, [11]
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and the response probability distribution is

p(θ̂|θ) =
K∑
k=0

PrBin

(
k;K, 1

N

)
φ◦(θ̂; θ, κ(kω1)). [12]

This model predicts correlations between response errors within a trial of the whole-report task in both the free response
order and the random response order conditions. For the free response order condition, the possible sequences of ordered
sample counts are {λ|

∑N

i=1 λi = K,λi ≥ λj∀i < j}. The probability of each sequence can be determined as

Pr(λ) = 1
NK

N∏
i=1

(
K −

∑i−1
j=1 λj

λi

)max(λ)∏
k=0

(
N −

∑k−1
j=0 nj(λ)

nk(λ)

)
. [13]

For the random response order condition, the set of possible sample count sequences is {λ|
∑N

i=1 λi = K}. The probability of
each sequence is given by

Pr(λ) = 1
NK

N∏
i=1

(
K −

∑i−1
j=1 λj

λi

)
. [14]

The response probability p(θ̂|θ) in the whole-report task can again be expressed as in Eq. 7.

Stochastic sampling model with even allocation. A second model variant assumes that the total number of samples varies from
trial to trial (as in the stochastic sampling model), but these samples are distributed across memory items as evenly as possible
(as in the fixed sampling model). For each trial, the total number of samples is drawn from a Poisson distribution with mean γ.
The probability distribution for a single response can then be given as a weighted sum of probabilities from the fixed sampling
model with different numbers of samples k,

p(θ̂|θ) =
∞∑
k=0

PrPoisson(k; γ)pfs(θ̂|θ; k). [15]

The response probabilities for the whole-report task can be determined in the same fashion as mixtures of the corresponding
response probabilities in the fixed sampling model. We note that this introduces error correlations even in the case of the free
response order condition, in which there are no correlations in the fixed sampling model.

Generalized stochastic sampling model. In the generalized stochastic sampling model, the Poisson distribution over precision
values is replaced by a negative binomial distribution with an additional discretization parameter p. The distribution of
response errors is then given by

p(θ̂|θ) =
∞∑
k=0

PrNegBin

(
k; γ

(1− p)N , p

)
φ◦(θ̂; θ, κ(kω1p)) [16]

with
PrNegBin(k; r, p) = Γ(k + r)

k! Γ(r) pr(1− p)k [17]

for 0 < p < 1. For fitting the model to data, we only compute the sum over the most likely sample counts k up to a cumulative
probability of 1− 10−4. We did not attempt to fit this model to whole-report data, as the number of combinatorial possibilities
quickly becomes computationally infeasible as p gets small.

Gamma model. The Gamma model assumes that recall precision for each item is drawn independently from a Gamma
distribution with shape parameter γ

N
and scale parameter ω1. This model constitutes the limit case of the generalized stochastic

sampling model for p→ 0 (see Section Gamma distribution as limiting case), and has independently been proposed in two
previous studies (3, 6). In the formulation of van den Berg et al., the precision follows a Gamma distribution with mean J̄1/N

α

and scale parameter τ , which is identical to the model described here for J̄1 = γω1, τ = ω1, and α = 1 (see Section Power law
for set size effects for model comparisons with α as free parameter).

The response probability distribution in the Gamma model is described as a continuous mixture of von Mises distributions,

p(θ̂|θ) =
∫ ∞
ω=0

pGamma

(
ω; γ
N
, ω1

)
φ◦(θ̂; θ, κ(ω))dω, [18]

with
pGamma(ω, k, θ) = 1

Γ(k)θk ω
k−1e−

ω
θ , [19]

where Γ is the gamma function. For model fitting, the integral is computed numerically with 1000 possible values of ω, which
cover the range of precision values with cumulative probabilities of the gamma distribution from 10−5 to 1− 10−5.
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In the whole-report task, the Gamma model predicts similar correlation patterns as the stochastic sampling model (which
likewise draws precision values independently for each item). In the random response order condition, response errors within a
trial are uncorrelated, and the precision distribution is given by

p(θ̂|θ) =
N∏
i=1

p(θ̂i|θ). [20]

In the free response order condition, the probability distribution for a sequence of responses can be described as

p(θ̂|θ) =
∫ ∞
ω1=0
· · ·
∫ ∞
ωN=0

p(ω)
N∏
i=1

pTφ◦(θ̂i; θi, κ(ωi)) + pNT
∑

j∈{1,...,N},j 6=i

φ◦(θ̂i; θj , κ(ωi))

dω1 . . . dωN , [21]

where ω = (ω1, . . . , ωN ) is the sequence of ordered precision values for the responses, and p(ω) is the probability of obtaining
such a sequence if each precision value is drawn independently from a gamma distribution. Evaluating this equation is
challenging, and in order to obtain an approximation, we discretize the range of possible precision values for each individual
response into m = 12 bins of equal probability. We can then determine the probability of obtaining a sequence of ordered
precision bin indices b = (b1, . . . , bN ) as

Pr(b) = 1
mN

m∏
k=1

(
N −

∑k−1
j=0 nj(b)

nk(b)

)
. [22]

Here, nk(b) denotes the number of entries in b with bi = k, analogously to its use in Eq. 6. The response probability for a
sequence of responses can then be given as a weighted sum over all possible sequences b,

p(θ̂|θ) ≈
∑
b

Pr(b)
N∏
i=1

∫ ωhigh(bi)

ω=ωlow(bi)
pGamma

(
ω; γ
N
, ω1

)pTφ◦(θ̂i; θi, κ(ω)) + pNT
∑

j∈{1,...,N},j 6=i

φ◦(θ̂i; θj , κ(ω))

dω. [23]

Here, ωlow(b) and ωhigh(b) are the boundaries of the precision bin with index b. Evaluating this form is more feasible, since
the integrals over each precision bin can be computed independently (using the same numerical method with a total of 1000
sampling points as above) and then combined. We note that with this binning approach, we still obtain precise estimates of
the response error distribution at each ordinal position; only the correlations between them are affected by the approximation.

Neural population model with heterogeneous tuning curves. We tested a variant of the neural population model that incorpo-
rates heterogeneity in the cells’ tuning functions of the kind observed in electrophysiological recordings (for the origin of this
model and a more complete investigation of the topic, see 7). Specifically, the model takes into account that neurons differ
in their minimum (baseline) and maximum (peak) levels of activity, as well as in tuning width. The model also relaxes the
assumption that the feature space is covered homogeneously by neural tuning curves. Instead, neurons’ preferred values are
selected at random from a uniform distribution. As in the original implementation of the neural population model (8), we
assume that each of N feature values in the memory sample array is encoded by a different population of M neurons. The
tuning curve of neuron i encoding a feature value θ is given by a scaled von Mises distribution function plus a baseline,

fi(θ) = αi + βi exp (κi(cos (θ − ϕi)− 1)). [24]

Here, αi is the amplitude of the neuron’s baseline activity, βi is the gain of the neuron, κi is the von Mises concentration
parameter which determines the tuning width, and ϕi is the neuron’s preferred feature value. These parameters are chosen
randomly for each simulated neuron, with the degree of interneuron variability determined by a global heterogeneity parameter
ν.

For ν = 0, the tuning parameters of all neurons are identical (with no baseline activity and homogeneous coverage of the
feature space), making the model identical to the standard neural population model described in (8), and an exact circular
analogue of the population model described in the main manuscript. The distributions of parameter values were chosen such
that for ν = 1, the population has approximately the heterogeneity observed in orientation-selective neurons in cortical area V1
(9). For ν > 1, individual neurons’ parameters vary over wider ranges than observed in these biological populations.

Concretely, the parameters for each neuron are drawn from the following distributions:

log κi ∼ N (log κ̃, ν2) [25]
log βi ∼ N (log 1, ν2) [26]
logαi ∼ N (log (0.04νβi), 2) [27]

ϕi ∼ N
(2π
M

(i− 1), ν2
)

mod 2π [28]

As in previous versions of the population model, we scaled the total expected activity of all neurons encoding all items with a
population gain parameter, γ, which was fixed across changes in set size. However, in the heterogeneous model the information
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capacity of a neural population varied not only as a function of γ but also all the individual tuning parameters of all the
component neurons. In order to equate populations with different randomly-drawn tuning parameters, instead of treating γ as
a free parameter for model fitting, we instead used the expected precision of a decoded estimate as the free parameter, and set
the population gain γ to a value that would achieve it.

Specifically, we first normalized the tuning curves such that the population would on average fire exactly one spike within
the decoding time interval:

f̌i(θ) = fi(θ)
1

2π
∑M

j=1

∫ π
−π fj(θ)dθ

[29]

The mean precision of ML decoding from this population (assuming full knowledge of the tuning curves) was determined by
the expected Fisher Information,

Ǐ = 1
2π

M∑
i=1

∫ π

−π

(
d log f̌i(θ)

dθ

)2

f̌i(θ)dθ. [30]

The mean decoding precision scales linearly with the number of spikes available for decoding, so in order to achieve the desired
precision Ī, we set the global gain parameter γ to

γ = Ī/Ǐ. [31]

The spike count ri of neuron i encoding feature value θ in a trial with set size N was then drawn from a Poisson distribution,

ri ∼ Poisson
(
γ

N
f̌i(θ)

)
. [32]

The log likelihood of stimulus feature θ′ for a given set of spikes r is (up to addition by a constant),

logL(θ′|r) =
M∑
i=1

ri log f̌i(θ′)− f̌i(θ′). [33]

Decoded estimates were obtained as the maximum of this function, and their precision as the width of the likelihood function
measured in terms of Fisher Information.

The heterogeneous model therefore has three free (global) parameters that determine the distributions of the single neuron
parameters and thereby the predicted error distributions of decoded estimates: the median tuning curve width, κ̃, the
heterogeneity parameter, ν, and the mean precision for a single stored item, Ī. We estimated the response distributions for
this model by sampling. For each combination of values for the parameters κ̃, ν, and Ī on a search grid (described in Section
Fitting procedure), we randomly drew 100 sets of single-neuron parameters for M = 1000 neurons∗ from the distributions
specified in Eqs. 25 – 28. For each set of single-neuron parameters, we generated a neural spiking pattern in response to 1000
randomly chosen feature values θ, and obtained likelihood functions and ML estimates θ̂ as described above. The response
error distribution is then approximated by a histogram over the decoding errors, θ̂ 	 θ, averaged over all sets of single-neuron
parameters (	 indicates subtraction on the circle). Mean ML parameters obtained for the single-report dataset were κ̃ = 1.53
± 0.15, Ī = 18.6 ± 1.0, and ν = 0.66 ± 0.08.

Unlike the discrete distribution predicted by the (homogeneous) stochastic sampling model (Fig. S6E), there is no probability
of zero precision decoding. This is because the unevenness in coverage of the stimulus space makes no spikes a more probable
response to some feature values than others, meaning it is no longer uninformative about the stimulus. However, at lower set
sizes there is a sharp increase in probability of very low precision estimates that could not in practice be discriminated from
zero (blue curve in Fig. S6D).

Example precision distributions from the Gamma (variable precision; 3, 6) model are shown in Fig. S6F. Interestingly,
heterogeneity provides a second putative connection between population coding and Gamma-distributed precision, in addition
to the one set out in the main text. This is because a Gamma process (the random process whose marginal distribution
at each moment in time is a Gamma distribution) can be constructed from an infinite superposition of different Poisson
processes, varying in their rate and, inversely, in their amplitude (i.e. Lévy jump size). So, with the right kind of heterogeneity,
a population model with Poisson spiking could theoretically result in estimates with exactly Gamma-distributed precision.

We also fit a further variant of the heterogeneous model incorporating short-range correlations of the form

cij = c0 exp(− |ϕi 	 ϕj |), [34]

with c0 set to 0.2. We assumed that the decoder did not have knowledge of the correlation structure. Due to the significant
computational challenge of simulating correlated Poisson activity, we used a Gaussian approximation to Poisson (see 7 for
details), and compared model fits to an otherwise identical model without correlations (i.e. with c0 set to 0).

∗The precise number of neurons has very little influence on the response distributions once the average spacing between neurons’ preferred values is significantly smaller than the tuning curve width, and
therefore we do not treatM as a free parameter in this model.
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Fitting procedure

We fit models separately to the behavioral data of each participant in each experiment of the single-report and whole-report
dataset. Data of each participant across all set sizes was fit with a single set of parameter values. We employed two different
methods to determine the ML parameter values, namely the Nelder-Mead simplex algorithm and grid search over the parameter
space.

We used the Nelder-Mead simplex algorithm to fit all models except for the generalized stochastic model and the neural
population model with heterogeneous tuning curves, for both single-report and whole-report data. We defined a limited grid of
initial parameter values, and ran the fitting algorithm (function fminsearch in Matlab) with each possible combination of initial
values until a termination tolerance of 0.01 was reached for both the fitted parameter values and the resulting likelihood value.
Possible initial values for the sample precision ω1 were 20, 22, 24. For stochastic sampling models and gamma model, we first
defined initial values for the mean precision at set size one, E[ω], as 22, 24, 26, then determined initial values of γ as γ = E[ω]

ω1
.

For fixed sampling models, we obtained separate fits for all integer values of K in the range (0, 25), and selected the fit with
the highest likelihood. Initial values for pNT were 0.01, 0.05, 0.1, and for α they were 2−0.5, 20, 20.5. In variants where these
parameters were not used they were fixed at pNT = 0 and α = 1, respectively.

We used the grid search to fit the generalized stochastic model (separately for different values of the discretization parameter
p) and the neural population model with heterogeneous tuning curves to single-report data. For the latter, likelihood values
were determined by Monte Carlo sampling, as no closed form solution is available. We also obtained additional fits for the
models described in the main text (stochastic sampling, fixed sampling, random-fixed, even-stochastic, and gamma) to verify
that the Nelder-Mead simplex algorithm for these models terminated in the global rather than a local maximum of the likelihood
function. Results shown in Fig. 3E of the main manuscript are based on the grid search fits to allow fair comparison between
the stochastic sampling (Poisson) model, generalized stochastic sampling model, and Gamma model.

The parameter grid was spanned by 50 possible values of each model parameter. Values for sample precision, ω1, were
spaced logarithmically in the range [2−4, 25], and values for mean precision, E[ω], in the range [2−2, 29]. For the fixed sampling
models, the parameter K took all integer values in the range [0, 50). The values for proportion of non-target responses, pNT,
were evenly spaced in the range [0.0, 0.14] for all models. The values for the discretization parameter, p, in the generalized
stochastic sampling model was spaced logarithmically in the range [10−4, 1]. To compute likelihood values in the grid search,
response errors were discretized into 101 evenly spaced bins for all models as well as for the behavioral data (ensuring fair
comparison between models with closed-form likelihood function and the heterogeneous neural model which requires sampling).

In both fitting methods, we determined a maximum likelihood value L and an associated set of parameters. For comparison
between models that differed in the number of free parameters, we computed Akaike information criterion (AIC) scores,

AIC = 2k − 2 log(L), [35]

and Bayesian information criterion (BIC) scores,

BIC = log(n)k − 2 log(L). [36]

Here, k is the number of free parameters in each model, and n is the number of data points (number of trials in the single-report
tasks, and number of individual responses in the whole-report tasks). AIC and BIC differences for the models described in the
main text are depicted in Fig. S3A and E for single-report and whole-report data, respectively. ML fit values of free parameters
are reported in Tables S3 and S4.

Additional model comparisons

Full maximum likelihood decoding for circular feature spaces. The assumption that the decoding precision in sampling models
increases in equal discrete steps with the number of samples is only strictly true for certain cases. For circular feature spaces
with samples drawn from a von Mises distributions, it is only an approximation. An exact method to compute the distribution
of response errors arising from ML decoding in circular space was derived in (8) and (4). For a given number of samples, m,
that are drawn independently from the same von Mises distribution with concentration parameter κ1 = κ(ω1), the resulting
distribution of decoding error can be described as a continuous scale mixture of von Mises distributions,

p(θ̂|θ,m) =
∫
p(r|m,κ1)φ◦(θ̂; θ, rκ1)dr, [37]

with
p(r|m,κ) = I0(κr)

(I0(κ))m rψm(r). [38]

Here, rψm(r) is the probability density function for the resultant length r of a uniform random walk of m steps. The distribution
of response errors in each sampling model is then a mixture of probability distributions p(θ̂|θ,m), weighted with the probability
of obtaining m samples for an item.

We obtained ML fits using this method to determine response error distributions for the stochastic sampling model, fixed
sampling model, and random-fixed and even-stochastic variants (the method is not compatible with the Gamma model, since
this model does not use discrete samples). The quality of fit was improved for all models (Fig. S3B and F), with only minimal
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changes for the stochastic sampling model, and largest improvements for fixed sampling model and random-fixed model fits to
single-report data. However, the overall pattern of results did not change when employing exact ML decoding instead of the
simpler approximation.

Mean parameter values for the models with exact ML decoding differ substantially from those obtained using the approxima-
tion method. This is driven by a subset of participants for which the best model fits using the exact method are characterized
by a large number of low-precision samples. Within this region of the parameter space, the exact method and the approximation
deviate more strongly from each other (Fig. S7), with the exact method producing slightly broader distributions of response
errors that can provide a better fit to some experimental result. We note that for the fixed sampling model, the variant with
exact ML decoding produces fits with K > 10 for a substantial proportion of participants (40% in the single-report dataset,
18% in the whole-report dataset), which is in conflict with typical estimates of 3-4 memory slots.

Excluding swap errors. We obtained ML fits of the behavioral data for all models without swap errors by keeping the parameter
pNT fixed at zero. The quality of fit for all models decreased substantially in this variant, independent of whether we measured
it via AIC or BIC values (which differ in how strongly they penalize additional free parameters; Fig. S3C and G). This is
consistent with previous findings that inclusion of swap errors improves model fit (1, 10).

Power law for set size effects. The variable precision model (3) proposed that the effect of set size on mean recall precision is
best explained by a power law of the form E[ω] ∝ N−α, with a free parameter α. We added this parameter to the formulations
of the stochastic sampling model and the Gamma model (the other models assume that a certain number of samples is
distributed between all items, thus the power law is not readily applicable). Quality of fit was improved for both models
(Fig. S3D and E), with the stochastic sampling model still providing better quality of fit for both single-report and whole-report
datasets.

Random drift over memory delays. The most striking effect in the whole-report data (2) is the salient decrease in recall precision
for successive responses when response order is freely chosen. A weaker decrease in precision, however, can also be observed in
the random response order condition (Fig. S4B), where it cannot be explained by a strategy of reporting the best-remembered
items first. All models described so far lack any mechanism that could capture the effects of increasing memory delay for later
responses, or interference from intervening reports. Thus, they inevitably fail to fit this aspect of the behavioral data (the
model fits for successive responses at each set size are identical in Fig. S4B).

We tested a mechanism for random drift of memorized feature values during memory delays that was previously described
for the population coding model (11). The effect of this drift is described by convolving the response probability distribution of
each model with a wrapped normal distribution centered on zero,

p̃(θ̂) = (p ∗ fWM(0, σ))(θ̂). [39]

We assume that the parameter σ increases linearly from the first to the last response in each trial of the whole-report task.
Moreover, we assume that the rate of random drift also scales linearly with set size, which has been found to provide the best
fits to delayed reproduction data with varying memory delays (11). This yields

σi = iNη [40]

for the ith response in a whole-report trial, where η is a new free parameter specifying the base drift rate.
When fitting a model with random drift to whole-report data, there is the concern that a high drift rate provides an

alternative mechanism to produce the salient decrease in precision observed in the free response order condition. The much
weaker decrease in precision in the random response order should constrain the drift rate parameter, but the two conditions
were performed by separate groups of participants. To see whether a single drift rate parameter can account for response
patterns across response order conditions, we pooled participant data to create a single super-participant each for the color
report (Experiments 1a & 2a) and orientation report conditions (Experiments 1b & 2b). We then fit this data with one set of
parameters each, varying only whether responses were ordered by memory precision or not to capture the different response
order conditions (Table S5).

Pooling the data did not qualitatively change the pattern of quality-of-fit measures for the whole-report task (Fig. S3I), and
the inclusion of a drift rate improved quality of fits in all models (Fig. S3J). The stochastic sampling model still provides the
best fit for the data, and it closely reproduces the overall pattern of response distributions across response order conditions
(Fig. S5), including the nearly uniform response distributions for the last reports at set size 6. We note that the slots+averaging
model may be at a disadvantage in fitting this pooled data since it is forced to commit to a fixed number of slots, whereas the
data may come from participants with different numbers of slots. For a more fair and thorough model comparison, it would
be desirable to obtain data from individual participants performing both free and random response order conditions of the
whole-report task.

Limiting cases of the negative binomial distribution

In the generalized stochastic sampling model, precision follows a scaled negative binomial distribution,

ω

ω1p
∼ NegBin

(
γ

N(1− p) , p
)
, [41]
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with parameters γ > 0, ω1 > 0, and 0 < p < 1. The probability of a precision value ω that is an integer multiple of ω1p is
defined as

Pr(ω) =
Γ( ω

ω1p
+ γ

N(1−p) )
( ω
ω1p

)! Γ( γ
N(1−p) )p

γ
N(1−p) (1− p)

ω
ω1p for ω

ω1p
∈ Z≥0. [42]

All other precision values have zero probability.
This probability distribution has mean E[ω] = γω1/N and variance V ar[ω] = γω1

2/N . Interpreted as a discrete sampling
model, the expected number of samples per item is γ/(pN) with variance γ/(p2N).

Convergence result for large N. For a set size of N , the number of items with precision exceeding a threshold, defined as a
multiple m > 0 of the base precision ω1, follows a binomial distribution,

Sω>mω1 ∼ Bin(N,Pr(ω > mω1)), [43]

with mean
E[Sω>mω1 ] = N Pr(ω > mω1). [44]

For the generalized stochastic sampling model, with precision following a scaled negative binomial distribution, we have

N Pr(ω > mω1) = N

∞∑
k=bm/p+1c

Γ(k + γ
N(1−p) )

k! Γ( γ
N(1−p) ) p

γ
N(1−p) (1− p)k

= N
p

γ
N(1−p)

Γ
(

γ
N(1−p)

) ∞∑
k=bm/p+1c

Γ(k + γ
N(1−p) )
k! (1− p)k.

[45]

In the limit N →∞, we have
p

γ
N(1−p) → 1, [46]

Γ
(
k + γ

N(1−p)

)
k! → Γ(k)

k! = 1
k

for k ∈ Z≥0, [47]

and
N

Γ
(

γ
N(1−p)

) → γ

1− p . [48]

We obtain

lim
N→∞

E[Sω>mω1 ] = γ

∞∑
k=bm/p+1c

(1− p)k−1

k
. [49]

Note that all terms of the sum are strictly positive. Convergence of the sum can be demonstrated by a ratio test. The ratio of
successive terms is

R = (1− p)kk
(1− p)k−1(k + 1) = (1− p) k

k + 1 , [50]

so
lim
k→∞

|R| = 1− p < 1, [51]

as p > 0. So the mean number of items with above-threshold precision converges to a finite positive number at large set sizes,
for all model parameters, implementing a probabilistic form of “item limit”.

Poisson distribution as limiting case. To determine the limiting cases of the negative binomial distribution for p → 1 and
p→ 0, we use its characteristic function. For X ∼ NegBin(r, p), this is given by

ϕω(t) = E[eitX ] =
(

p

1− (1− p)eit

)r
. [52]

For the scaled negative binomial distribution as used in the generalized stochastic model (Eq. 41), the characteristic function is

ϕω(t) =
(

p

1− (1− p)eitω1p

) γ
N(1−p)

. [53]

We can write this as

ϕω(t) = exp

[
log

[(
p

1− (1− p)eitω1p

) γ
N(1−p)

]]

= exp
[
γ

N

(
log(p)
1− p −

log(1− (1− p)eitω1p)
1− p

)] [54]
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In the limit p→ 1, we have
log(p)
1− p → −1 [55]

and for q = 1− p (and thus q → 0)
log(1 + aq)

q
→ a. [56]

The limiting case of the characteristic function for p→ 1 is therefore

ϕω(t)→ exp
[
γ

N
(eitω1 − 1)

]
, [57]

which is the characteristic function of the scaled Poisson distribution, ω
ω1
∼ Poisson( γ

N
).

Gamma distribution as limiting case. We again start with the characteristic function of the scaled negative binomial distribution
(Eq. 53). We use the Taylor series for the exponential function,

ex = 1 + x+O(x2) as x→ 0, [58]

where O(x2) designates terms that are of order x2 or greater.
We can then write the characteristic function as

ϕω(t) =
(

p

1− (1− p)(1 + itω1p+O(p2))

) γ
N(1−p)

=
(

p

p(1− itω1) +O(p2)

) γ
N(1−p)

=
(

1
1− itω1 +O(p)

) γ
N(1−p)

.

[59]

In the limit p→ 0, this yields

ϕω(t)→
( 1

1− itω1

) γ
N

. [60]

This is the characteristic function of the Gamma distribution with ω ∼ Gamma( γ
N
, ω1). We are grateful to Zakhar Kabluchko

for this derivation.
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multiplied by the sample precision ω1. (D, E) The likelihood function on any particular retrieval measures the compatibility of different stimulus values with the obtained samples.
For normally distributed samples, the likelihood is also normal with peak (the ML estimate) at the mean of the sample values. The likelihood width (corresponding to precision
nω1) indicates the reliability of the estimate and predicts subjective confidence. (F) Both the location and width of the likelihood vary between retrievals. (G, H) Considering
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Fig. S2. Delayed reproduction tasks. (A) Structure of an illustrative single-report task with orientation report cued by object location. (B) Structure of an illustrative whole-report
task. The participant sequentially reports the features of all items in the sample array, either in a freely chosen order (shown here) or a prescribed random order.

12 of 23 Sebastian Schneegans, Robert Taylor, and Paul M. Bays



20

-20

0

Sto
ch

asti
c

Fixe
d

Random-�xe
d

Even-st
och

asti
c

Gamma

A

Δ
A

IC
 / 

Δ
BI

C

40

60

full ML decoding power lawno swap errors

ΔAIC
ΔBIC

20

-20

0

40

60

20

-20

0

40

60

20

-20

0

40

60
B C D

100

-100

0

600

700

200

300

400

500

100

-100

0

600

700

200

300

400

500

100

-100

0

600

700

200

300

400

500

100

-100

0

600

700

200

300

400

500

E F G H

Sto
ch

asti
c

Fixe
d

Random-�xe
d

Even-st
och

asti
c

Sto
ch

asti
c

Fixe
d

Random-�xe
d

Even-st
och

asti
c

Gamma

Sto
ch

asti
c

Gamma

Sto
ch

asti
c

Fixe
d

Random-�xe
d

Even-st
och

asti
c

Gamma

Sto
ch

asti
c

Fixe
d

Random-�xe
d

Even-st
och

asti
c

Sto
ch

asti
c

Fixe
d

Random-�xe
d

Even-st
och

asti
c

Gamma

Sto
ch

asti
c

Gamma

Δ
A

IC
 / 

Δ
BI

C

1

0

Sto
ch

asti
c

Fixe
d

Random-�xe
d

Even-st
och

asti
c

Gamma

Δ
A

IC
 / 

Δ
BI

C

2

×10 4

1

0

2

×10 4

Sto
ch

asti
c

Fixe
d

Random-�xe
d

Even-st
och

asti
c

Gamma

I J
random drift

full ML decoding power lawno swap errors

Fig. S3. Model comparison for additional model variants. Mean differences in AIC (light gray) and BIC values (dark gray) relative to the stochastic sampling model with swap
errors are shown for single-report data (A-D), whole-report data (E-H), and whole-report data pooled over participants (I-J). Better models have lower values. Error bars indicate
± 1 SE. (A, E, I) Models as described in the main text, including a fixed probability of swap errors per memory item. (B, F) Variant of discrete sampling models with exact ML
decoding from samples in circular feature space. (C, G) Model variants without swap errors (pNT = 0). (D, H) Model variants with power law relationship for set size effect, with
exponent α as additional free parameter. (J) Model variants with random drift of memorized features over memory delay.

Sebastian Schneegans, Robert Taylor, and Paul M. Bays 13 of 23



Error
0

2

1

0
-π π 0-π π 0-π π0-π π 0-π π0-π π

2

1

0

2

1

0

2

1

0

2

1

0

Pr
ob

ab
ili

ty
 d

en
si

ty

Se
t s

iz
e 

1
Se

t s
iz

e 
2

Se
t s

iz
e 

3
Se

t s
iz

e 
4

Se
t s

iz
e 

6

Response 1 Response 2 Response 3 Response 4 Response 5 Response 6

Error
0

2

1

0
-π π 0-π π 0-π π0-π π 0-π π0-π π

2

1

0

2

1

0

2

1

0

2

1

0

Pr
ob

ab
ili

ty
 d

en
si

ty

Se
t s

iz
e 

1
Se

t s
iz

e 
2

Se
t s

iz
e 

3
Se

t s
iz

e 
4

Se
t s

iz
e 

6

Response 1 Response 2 Response 3 Response 4 Response 5 Response 6

A

B

Behavioral data
Fixed sampling model
Stochastic sampling model
Gamma model

Fig. S4. Behavioral data and model fits in the whole-report task (2) for color. (A) Free response order condition (Experiment 1a). (B) Random response order condition
(Experiment 2a). Solid lines show the mean across participants, and error bars and shaded areas indicate ± 1 SE.

14 of 23 Sebastian Schneegans, Robert Taylor, and Paul M. Bays



Error
0

2

1

0
-π π 0-π π 0-π π0-π π 0-π π0-π π

2

1

0

2

1

0

2

1

0

2

1

0

Pr
ob

ab
ili

ty
 d

en
si

ty

Se
t s

iz
e 

1
Se

t s
iz

e 
2

Se
t s

iz
e 

3
Se

t s
iz

e 
4

Se
t s

iz
e 

6

Response 1 Response 2 Response 3 Response 4 Response 5 Response 6

Error
0

2

1

0
-π π 0-π π 0-π π0-π π 0-π π0-π π

2

1

0

2

1

0

2

1

0

2

1

0

Pr
ob

ab
ili

ty
 d

en
si

ty

Se
t s

iz
e 

1
Se

t s
iz

e 
2

Se
t s

iz
e 

3
Se

t s
iz

e 
4

Se
t s

iz
e 

6

Response 1 Response 2 Response 3 Response 4 Response 5 Response 6

A

B

Behavioral data
Fixed sampling model
Stochastic sampling model
Gamma model
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Table S1. Single-report experiments used for model comparison in this study. The Trials column denotes the number of trials each participant
completed per set size.

No Study Feature Set Sizes Participants Trials
1 Zhang & Luck, 2008 (5) Color 1, 2, 3, 6 8 125
2 Bays et al., 2009 (10) Color 1, 2, 4, 6 12 200
3 van den Berg et al., 2012 (3) Color 1 – 8 13 216
4 van den Berg et al., 2012 (3) Orientation 1 – 8 6 320
5 Rademakers et al., 2012 (12) Orientation 3, 6 6 800
6 Bays, 2014 (8), Exp 1 Orientation 1, 2, 4, 8 8 230
7 Bays et al., 2011 (13), Exp 1 Orientation 1, 2, 4, 6 8 800
8 Bays, Wu & Husain, 2011 (14) Orientation 1, 6 10 50, 250
9 Bays, Wu & Husain, 2011 (14) Color 1, 6 10 50, 250
10 Gorgoraptis et al., 2011 (15) Orientation 1 – 5 8 100
11 Pratte et al., 2017 (16) Orientation 1, 2, 3, 6 12 640
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Table S2. Whole-report experiments used for model comparison. All experiments are taken from (2).

No Feature response order Set Sizes Participants Trials
1 Color Free 1, 2, 3, 4, 6 22 99
2 Orientation Free 1, 2, 3, 4, 6 20 200
3 Color Random 1, 2, 3, 4, 6 17 99
4 Orientation Random 1, 2, 3, 4, 6 19 200
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Table S3. Parameter values of ML fits for single-report data (mean ± 1 SE across participants and experiments). Outliers with deviation from
mean greater than 3 SD were excluded (at most 4 out of 101 individual fit values for each parameter) in order to provide more representative
parameter values.

Model γ or K ω1 pNT α

Stochastic 13.2 ± 1.7 1.84 ± 0.11 0.0245 ± 0.0023
Fixed 4.90 ± 0.21 2.80 ± 0.14 0.0265 ± 0.0023
Random-fixed 11.4 ± 0.7 1.55 ± 0.10 0.0238 ± 0.0023
Even-stochastic 7.31 ± 1.47 3.04 ± 0.15 0.0287 ± 0.0024
Gamma 8.63 ± 1.94 5.00 ± 0.36 0.0281 ± 0.0024
full ML decoding for circular feature spaces
Stochastic 35.0 ± 6.3 1.68 ± 0.12 0.0261 ± 0.0024
Fixed 11.7 ± 0.9 2.10 ± 0.17 0.0305 ± 0.0027
Random-fixed 13.8 ± 0.8 1.46 ± 0.11 0.0262 ± 0.0024
Even-stochastic 15.9 ± 3.3 2.93 ± 0.17 0.0289 ± 0.0024
excluding swap errors
Stochastic 8.35 ± 0.81 2.28 ± 0.13
Fixed 3.67 ± 0.13 3.25 ± 0.17
Random-fixed 6.91 ± 0.34 2.08 ± 0.12
Even-stochastic 4.49 ± 0.14 3.55 ± 0.16
Gamma 3.95 ± 0.73 8.16 ± 0.62
power law for set size effects
Stochastic 8.46 ± 0.51 1.96 ± 0.11 0.0310 ± 0.0026 0.809 ± 0.031
Gamma 4.35 ± 0.37 5.60 ± 0.40 0.0339 ± 0.0026 0.809 ± 0.032
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Table S4. Parameter values of ML fits for whole-report data (mean ± 1 SE across participants and experiments). Outliers with deviation from
mean greater than 3 SD were excluded (at most 4 out of 78 individual fit values for each parameter).

Model γ or K ω1 pNT α

Stochastic 4.30 ± 0.14 5.18 ± 0.25 0.0367 ± 0.0041
Fixed 2.72 ± 0.10 4.85 ± 0.31 0.0529 ± 0.0036
Random-fixed 4.21 ± 0.16 4.35 ± 0.28 0.0481 ± 0.0039
Even-stochastic 2.87 ± 0.07 7.20 ± 0.32 0.0292 ± 0.0039
Gamma 1.40 ± 0.06 23.2 ± 1.6 0.0384 ± 0.0043
full ML decoding for circular feature spaces
Stochastic 4.31 ± 0.14 5.19 ± 0.25 0.0367 ± 0.0041
Fixed 6.08 ± 0.88 4.54 ± 0.35 0.0551 ± 0.0037
Random-fixed 4.19 ± 0.17 4.40 ± 0.28 0.0491 ± 0.0040
Even-stochastic 2.87 ± 0.07 7.23 ± 0.32 0.0292 ± 0.0039
excluding swap errors
Stochastic 3.57 ± 0.11 5.66 ± 0.24
Fixed 2.42 ± 0.06 2.97 ± 0.21
Random-fixed 3.61 ± 0.12 3.32 ± 0.23
Even-stochastic 2.56 ± 0.06 7.43 ± 0.32
Gamma 1.07 ± 0.04 31.7 ± 2.1
power law for set size effects
Stochastic 7.06 ± 0.39 4.64 ± 0.21 0.0239 ± 0.0032 1.37 ± 0.03
Gamma 2.33 ± 0.12 19.5 ± 1.4 0.0258 ± 0.0034 1.38 ± 0.03
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Table S5. Parameter values of ML fits for pooled whole-report data (with a single set of parameters for Experiments 1a & 2a, and for Experi-
ments 1b & 2b).

Model γ or K ω1 pNT η

Experiments 1a & 2a
Stochastic 3.66 4.25 0.0204
Fixed 3.00 2.54 0.0631
Random-fixed 4.00 2.72 0.0478
Even-stochastic 2.54 5.74 0.00576
Gamma 1.21 17.3 0.0251
Experiments 1b & 2b
Stochastic 3.80 6.81 0.0219
Fixed 2.00 6.77 0.0309
Random-fixed 4.00 4.79 0.0428
Even-stochastic 2.64 9.20 0.0169
Gamma 1.09 37.3 0.0261
Experiments 1a & 2a, with random drift
Stochastic 3.70 4.67 0.0181 0.0181
Fixed 3.00 2.69 0.0614 0.0194
Random-fixed 4.00 2.78 0.0464 0.0114
Even-stochastic 2.61 6.72 0.00434 0.0232
Gamma 1.18 19.6 0.0236 0.0151
Experiments 1b & 2b, with random drift
Stochastic 3.99 9.62 0.0136 0.0309
Fixed 2.00 7.60 0.0265 0.0207
Random-fixed 4.00 5.34 0.0314 0.0265
Even-stochastic 2.81 14.16 0.0100 0.0341
Gamma 0.995 67.3 0.0196 0.0292
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