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Abstract

When one part of the body exerts force on another part, the resulting tactile sensation is perceived as weaker than when the same
force is applied by an external agent. This phenomenon has been studied using a force matching task, in which observers were first
exposed to an external force on a passive finger and then instructed to reproduce the sensation by directly pressing on the passive
finger with a finger of the other hand: healthy participants consistently exceeded the original force level. However, this exaggeration
of the target force was not observed if the observer generated the matching force indirectly, by adjusting a joystick or slider that con-
trolled the force output of a motor. Here, we present the first detailed computational account of the processes leading to the exag-
geration of target forces in the force-matching task, incorporating attenuation of sensory signals based on motor predictions. The
model elucidates previously unappreciated contributions of multiple sources of noise, including memory noise, in determining match-
ing force output, and it shows that quantifying attenuation as the discrepancy between direct and indirect self-generated forces iso-
lates its predictive component. Our computational account makes the prediction that attenuated sensations will display greater trial-
to-trial variability than unattenuated ones because they incorporate additional noise from motor prediction. Quantitative model fitting
of new and existing force-matching data confirmed the prediction of excess variability in self-generated forces and provided evidence
for a divisive rather than subtractive mechanism of attenuation, while highlighting its predictive nature.

NEW & NOTEWORTHY We formulate a detailed computational account of sensory attenuation in force-matching tasks that dis-
ambiguates contributions of perceptual, memory, and prediction noise to isolate a pure measure of attenuation strength.
Analysis of data from nearly 500 participants shows that attenuated sensations display increased trial-to-trial variability, consist-
ent with incorporating additional noise inherent to motor prediction. These results support a divisive, rather than subtractive,
reduction in the sensation of self-generated forces based on predicted reafference.

forward model; perception; sensory attenuation

INTRODUCTION

The same tactile stimulus is perceived differently when it
is the result of your own action compared with when it has
an external source. This phenomenon is often referred to as
sensory attenuation, as a self-generated stimulus is typically
perceived as weaker than an externally generated one. A

predictive mechanism has been proposed for this phenom-
enon (1–6), inspired by neurophysiological mechanisms of
sensory cancellation (7–10). According to the predictive
account, when the motor system generates a voluntary
movement, a duplicate of the motor command (an efference
copy) is provided to a forward model that integrates it with
an estimate of the state of the body to predict sensory
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consequences of the movement (11). This prediction is used
to attenuate incoming tactile signals (reafference) that are a
consequence of the action.

Shergill et al. (2) described a force-matching task, in which
participants were asked to reproduce the tactile sensation of a
target force, delivered to their passive left index finger by a
lever attached to a torque motor (Fig. 1A). The reproduction
was performed in two conditions: participants either applied a
force to the left index finger by pressing on the lever with their
right index finger (direct condition, Fig. 1B) or they used their
right index finger to adjust the setting of a response device
that controlled the force output of the torque motor (indirect
condition, Fig. 1C). In both conditions, the participants were
asked to modulate the force on their passive left finger until it
matched the tactile sensation of the preceding target force.

The results showed that healthy participants produced
matching forces that consistently exceeded the target forces
in the direct condition, whereas matching forces were much
closer to veridical in the indirect condition. Since the man-
ner of presentation of the target force was identical in both
conditions, the authors concluded that the exaggerated
matching forces in the direct condition were caused by a rel-
ative attenuation of the tactile sensation induced in the pas-
sive finger by the participant’s action. Moreover, as it was
only in the direct condition that the force applied by the
active finger would naturally cause a tactile sensation in the
passive finger, the authors suggested that this attenuation
was based on an internal prediction of the expected sensory
consequences of the action. In the indirect condition, the
relationship between movement of the active finger and
force in the passive finger was mediated by the response
device in a novel manner that has previously been shown to
impair sensorimotor prediction (12).

These results have been replicated and the predictive
account corroborated in a range of studies that have inves-
tigated the sensory attenuation phenomenon using differ-
ent experimental settings and manipulations (3, 4, 13).
Nevertheless, a detailed understanding of the computa-
tional basis of sensory attenuation has remained elusive.
In particular, previous studies have debated whether

attenuation is based on a subtractive mechanism, in which
the sensation of an external force exceeds that of a self-
generated force by a fixed amount irrespective of the force
magnitude, or a divisive mechanism, in which the level of
attenuation scales with the amplitude of the predicted
force (5, 14). This is significant because a subtractive
mechanism could operate with only a coarse expectation
that a self-generated force will be felt, whereas a divisive
mechanism implies a fine prediction of the force ampli-
tudes resulting from self-action.

Although models of sensory attenuation have been pre-
sented in previous work at varying levels of computational
detail (1, 15–17), these models have not addressed the percep-
tual and cognitive demands specific to force reproduction.
Here, we present the first detailed model of the computa-
tions that lead to the exaggeration of target forces in the
force-matching task. We first validated themodel framework
by testing a prediction about trial-to-trial variability in
matching force in new and previously published datasets.
Our hypothesis was that the variability of thematching force
would be greater in the direct condition compared with the
indirect one, even when themeanmatching force was equa-
ted. We then formally compared model variants with divi-
sive and subtractive mechanisms, finding decisive evidence
for a divisive attenuation process. Our findings expand our
understanding of the attenuation process and provide fur-
ther evidence against nonpredictive gating (18–20) as an
account of force-matching responses.

MATERIALS AND METHODS

Model

Ourmodel of the processes involved in the force matching
task is set out in Fig. 1D. The black path is involved in both
direct and indirect conditions, whereas the blue path is
unique to direct force generation. The filled circles represent
the observable quantities: the target force exerted by the
torquemotor (FT) and thematching force exerted by the par-
ticipant (FM). These are the only measured variables in the

A

B

C

D

Figure 1. A–C: the force-matching task.
A: a lever attached to a torquemotor deliv-
ers a target force (FT) to a participant’s pas-
sive index finger. B: in the direct condition,
the participant reproduces the force sensa-
tion (with force FM) by pressing with the
other hand. C: in the indirect condition, the
participant reproduces the force sensation
by controlling the torque motor with a
slider (shown) or joystick. D: diagram of the
processes involved in the force matching
task. Black: processes involved in both
the direct and indirect conditions. Blue:
model of the predictive mechanism
leading to attenuation. This prediction
is effective only in the direct condition.
See the text for a more extensive
description.
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experiment. Perceptual noise corrupts the participant’s tac-
tile perception of both the target force and the matching
force (sT and sM, respectively). Moreover, after experiencing
the target force, the participant has to hold that sensation in
memory (mT) for comparison with the matching force, and
this process may introduce additional variability and bias
(memory noise).

During the reproduction phase, the participant adjusts
their output force FM until the sensation of the force in the
passive finger (~sM) is equal to the remembered sensation of
the target forcemT, again with the possibility of some inher-
ent variability (comparison noise). In the direct condition,
an efference copy of the motor output from the active hand
(fcopy) provides input to a forward model that predicts the
tactile sensation it will produce on the passive finger (spred).
This prediction is combined with the afferent sensory signal
sM to produce an attenuated sensation ~sM. In the indirect
condition, where the causal relationship between active fin-
ger movement and passive finger sensation is unnatural, we
assume the sensation of the matching force is not attenu-
ated, i.e., ~sM ¼ sM.

This formal model identifies two important features of the
force-matching task. First, consistent differences observed
between target and matching forces cannot be straightfor-
wardly ascribed to the attenuation process, as they could
also reflect biases in memory of the target force. Therefore,
rather than comparing matching forces to the target force,
we can compare matching forces generated in direct and
indirect conditions in response to the same target force.
Such a comparison has identical memory and decision com-
ponents, and therefore, it allows us to isolate the attenuation
process. Second, the sources of noise on the predictive path-
way (blue) are expected to produce trial-by-trial variability in
attenuation, which should translate into greater variability
in thematching force when the attenuation process is active,
i.e., in the direct condition as compared with the indirect
condition. Based on these features, we analyzed data from
the force-matching task, focusing on differences between
direct and indirect conditions in mean amplitude and trial-
to-trial variability of the matching force.

Data

In this study, we combined analysis of new data and rean-
alysis of previously published data. Specifically, we included
four datasets from experimental studies on force-matching
tasks. We extended a study by Kilteni and Ehrsson (21), add-
ing new data from 93 participants to the existing dataset of
28 participants. The experimental protocol was identical for
all 121 participants and is summarized below; see Ref. 21 for

full methodological details. The other three datasets were
from previously published studies on this topic (5, 22, 23).

Table 1 outlines the sample characteristics and methodo-
logical details of each study. In all cases, target force levels
were uniformly distributed across the stated range and
tested with equal frequency in a pseudorandomized order
of trials. In each trial, participants were given 3 s to repro-
duce the target force, and the matching force was computed
as the mean force exerted in the time interval between 2 and
2.5 s after the go signal.

In Studies 1–3, trials were equally divided into blocks of
direct and indirect forcematching, with Studies 1 and 2 using
a linear potentiometer (or “slider”) and Study 3 using a joy-
stick to control force output in the indirect condition. In the
direct condition, participants in Studies 2 and 3 pressed on
the top surface of the lever to reproduce the target force,
whereas in Studies 1 and 4 they pressed on a force sensor
positioned above the lever, while the torque motor continu-
ously transmitted the recorded force to the passive finger,
closely mimicking direct contact between the fingers. The
force was always transmitted veridically in Study 1, whereas
trials in Study 4 were equally divided into three blocks in
which the gain between sensed and transmitted force was
varied, so the force generated on the passive finger was 2�
(double), 1� (veridical), or 0.5� (half) that of the participant’s
active finger press. As a consequence, the force generated by
and tactile feedback received in the active finger varied
across gain conditions, while participants produced approxi-
mately the samematching force in the passive finger.

We excluded from the analyses four participants from
Study 1 and two participants from Study 2 since they had
missing data and two participants from Study 2 since the
matching forces they produced did not correlate with the
target forces, suggesting that they likely did not properly
understand the task.

Participants in Studies 2 and 3 were divided into sub-
groups that were analyzed separately. Participants from
Study 2 were part of the Cambridge Center for Aging and
Neuroscience (24, 25) cohort of healthy adults spanning the
adult age range, and they were separated by age into young
adult, middle-aged, and older adult subgroups, following the
same criteria as the source study (23). Study 3 comprised a
patient subgroup with schizophrenia and an age-matched
healthy control subgroup.

Studies 1–3, although using slightly different apparatus
and including different populations, investigated the sen-
sory attenuation phenomenon using the same force-match-
ing task, allowing their results to be directly compared.
Replicating our analyses across these three independent

Table 1. Summary of datasets

Study Source Target Range (n) Target Levels Trials Per Participant Subgroup/Condition n Age (Yr)

1 Kilteni and Ehrsson [(21), extended] 1–3.5 6 72 121 27.9 ± 4.9
2 Wolpe et al. (23) 1–2.5 4 64 Young 79 30.7 ± 5.9

Middle 131 51.9 ± 7.2
Older 108 75.4 ± 6.2

3 Shergill et al. (22) 0.5–2.75 5 160 Healthy 19 35.9 ± 14.0
Patients 19 36.4 ± 13.4

4 Bays and Wolpert (5) 1–3 5 50 2� gain 16 18–40
50 1� gain
50 0.5� gain
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datasets strengthens the results and demonstrates the
generalization of our findings. In contrast, Study 4 was
analyzed and presented separately from Studies 1–3, as it
did not have an indirect force-matching condition,
instead having a within-participant manipulation of gain
that made it specifically suited for evaluating the gating
account of attenuation.

Analysis

To assess qualitative predictions of the model frame-
work for direct versus indirect force matching, we first
computed, for each participant in each of Studies 1–3, the
mean (�FM) and standard deviation (rFM ) of their matching
forces over all trials with each target force level (FT), sepa-
rately for each condition. We then performed a linear
mixed-effects model (fitlme in MATLAB) with subject as a
random factor on these measures to generate lines of best
fit and estimates of slopes and intercepts. Study 4 was
omitted from this analysis as it had no indirect force-
matching condition.

When performing statistical inference on regression
parameters, we used the Bayesian approach implemented in
MATLAB (https://klabhub.github.io/bayesFactor/) with the
default Jeffreys–Zellner–Siow prior on effect sizes (26). The
reported Bayes factors compare the predictive adequacy of
two competing hypotheses (e.g., alternative and null) and
quantify the change in belief that the data bring about for
the hypotheses under consideration (27). For example,
BF10 ¼ 10 indicates that the data are 10 times more likely to
occur under the alternative hypothesis (i.e., there is a differ-
ence) than under the null hypothesis (i.e., there is no differ-
ence). Evidence for the null hypothesis is indicated by BF10 <
1, in which case the strength of evidence is indicated by 1/BF10.

Formal Model Specification

For quantitative fitting, we developed two implementa-
tions of the attenuation model illustrated in Fig. 1, incorpo-
rating either a subtractive or divisivemechanism.

Subtractive Model

According to the subtractive model, the tactile sensory
attenuation is fixed, irrespective of the intensity of the stimu-
lus. That is, given an afferent sensory signal sD, the participant
perceives an attenuated sensation ~sD ¼ sD � K, where K is the
subtractive attenuation. We assume K is normally distributed
with mean �K and standard deviation sK. We further assume
that, for a given target force, the matching force in the indi-
rect condition, FI, is normally distributed with mean �FI and
SD rFI , respectively. Thismatching force contains all the com-
ponents of perception for the direct condition, except for any
attenuation. Consequently, the matching force in the direct
condition, FD, for the same target force will also be normally
distributed withmean and SD,

�Fsub
D ¼ �K þ �FI;

rFsub
D

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
K þ r2

FI

q
:

In contrast to the divisive model (see Divisive Model), the
skewness of matching forces predicted by the subtractive
model is always zero.

Divisive Model

The divisive model is based on the hypothesis that the
attenuation is proportional to the stimulus intensity, i.e.,
~sD ¼ sD=K. Again, assuming K and FI are normally distrib-
uted, the matching force in the direct condition is the prod-
uct of two normally distributed variables. This distribution
function does not in general have a closed-form expression,
but can be approximated by a skew-normal distribution
matched for mean, SD, and skewness [(28); see APPENDIX for
derivations]:

�Fdiv
D ¼ �K � �FI;

rFdiv
D

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�F2
Ir

2
K þ ð�K2 þ r2

KÞr2
FI

q
¼ rKrFI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ d2K þ d2FI

q
;

;

Skew½Fdiv
D � ¼ 6lxlyr

2
xr

2
y

Var½Z�3=2
¼ 6dxdy

ð1 þ d2x þ d2yÞ3=2
;

where we have used, dK :¼ �K
rK

and dFI :¼
�FI
rFI

.

Hierarchical Bayesian Modeling

We used hierarchical Bayesian estimation to fit the models
to the data (29, 30). In this modeling framework, a unique set
of parameters is estimated for each individual participant, but
all instances of each parameter are considered samples from a
population-level distribution. Consequently, the estimation of
each individual-level parameter is simultaneously informed
by data from all the other participants—this occurs because
all individual data contribute to the estimation of the popula-
tion-level parameters, which, in turn, constrain all the indi-
vidual-level parameters. Therefore, the hierarchical models
offer a twofold advantage compared with traditional fitting
approaches: these models share informative power across
model hierarchy, which is particularly beneficial in scenarios
with limited data (e.g., a low number of trials per participant,
as is the case in some of the datasets we examined), and also
for regularization of parameter estimates across individuals,
enhancing the reliability of these estimates (31). An important
feature of the Bayesian approach is that it provides a posterior
distribution over potential parameter values, rather than just
point estimates of the best-fitting parameters as is the case
with classical modeling approaches (e.g., ML). This full poste-
rior distribution not only offers insights into the best point
estimate (e.g., MAP) but also provides information about the
uncertainty of parameter estimation (e.g., the width of the
posterior distribution).

Data Fitting

We fit subtractive and divisive models (see Formal Model
Specification) separately to each subgroup in each of Studies 1–
4 (Table 1). We simultaneously estimated the posterior distri-
butions of parameters by using the individual trial data from
all conditions within each experiment. Detailedmodel descrip-
tions, along with specified prior distributions, can be found in
the APPENDIX. In brief, we fit a separate set of parameters for
each input force level in the indirect force reproduction task.
Using those measured matching forces, we estimated the
attenuation parameters to fit the direct force reproductions.
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To obtain the hierarchical fit, we used the Gibbs sampler
with the Markov Chain Monte Carlo (MCMC) algorithm
implemented in JAGS (32), in combination with thematjags
package (33) for MATLAB (The MathWorks Inc.). Posterior
distributions for all parameters were obtained by running
three parallel chains, with a thinning factor of two, and dis-
carding the initial 1,000 samples for burn-in, resulting in a
total of 10,000 valid samples per chain. After obtaining the
samples for each dataset andmodel, we performed standard
checks for convergence of chains [bR (34)] and autocorrela-
tion within chains, and found the satisfactory performance
of the sampler for both individual- and population-level
parameters. To compare howwell the two competing models
fit the data, we used Deviance Information Criterion (DIC) as
a comparison metric. DIC is a generalization of Akaike’s
Information Criterion (AIC), and it similarly depends on the
goodness of fit and model complexity. The model with a
smaller DIC is expected to be the one that would best predict
and replicate the data.

We summarize the obtained posterior distributions numeri-
cally by reporting the median of posterior samples and the
90% highest density interval (HDI). The 90% HDI includes
parameter values that have at least someminimal level of pos-
terior credibility as opposed to values outside the HDI (35).
Specifically, the probability density is greater for any parame-
ter value within the 90%HDI compared with values outside it,
and the total probability of values within the 90%HDI is 90%.
Consequently, the width of the HDI serves as ameasure of the
uncertainty associated with the parameter estimates, i.e.,
when the HDI is narrow, we can be relatively certain about the
parameter estimates.

When analyzing differences in parameter values between
different subgroups of participants, we first calculate the
group mean difference (MD) by finding the difference
between the posterior distributions of two groups. We then
report 95% HDI of the difference scores to quantify a range
of values that has a 95% probability of containing the true
difference in parameter estimates for two groups. Because
parameter values with higher density are interpreted as
more credible than parameter values with lower density, we
set a decision rule to reject a mean difference of zero (i.e., no
difference) when the 95% HDI does not contain zero.
Intervals that include zero suggest zero as a credible differ-
ence value, indicating no difference between groups.

To assess the descriptive adequacy of themodel, we gener-
ated posterior predictive distributions. The posterior predic-
tive distribution shows what data to expect given the model
at hand and the available knowledge, which includes the
posterior distribution over parameters informed by the
observed data (30). The posterior predictive distribution is a
distribution over data and therefore indicates the relative
probability of different outcomes (i.e., output forces) after
the model has seen the data. By comparing this predicted
data to the data already observed, we can evaluate themodel’s
adequacy. We generated posterior predictive distributions of
output forces in both direct and indirect reproduction condi-
tions by using randomly sampled parameters from individ-
ual-level posterior distributions and the generative process
described for each model. We conducted 10,000 simulations
of output forces for each participant and condition. We then
assess the resemblance between simulated and observed data

through a combination of qualitative and quantitative meth-
ods. Qualitatively, we visually examine graphical displays of
observed and simulated data.

In addition, we quantitatively assess the fit by calculating
the Bayesian P value (not to be confused with the frequentist
P value). This value quantifies the probability that the
obtained parameters will produce simulated data that devi-
ates more from the predicted (average) data than the
observed data does (36). The Bayesian P value of 0.5 indi-
cates that observed and simulated data deviate equally
around the model’s prediction. If the model’s predictions
exhibit bias, meaning they are too extreme in either direc-
tion, the values will tend to deviate from 0.5, approaching
zero or one. In such cases, one should consider rejecting the
model and exploring alternative models. Given that the
tested models are designed to overfit the data in the indirect
reproduction conditions, and hence are expected to produce
predictions very similar to the data, we focus on Bayesian P
values in the direct reproduction condition.

RESULTS
We first examined whether the predictions of the model

were qualitatively consistent with behavior in three existing
datasets where participants performed force matching in
both direct and indirect conditions. Figure 2A illustrates the
typical pattern of matching forces using data from Study 1 as
an example [Kilteni and Ehrsson (21); see Fig. A2 and Fig. A3
for other datasets]. The relationship between target force
andmeanmatching force in each condition was close to lin-
ear, as shown by lines of best fit in Fig. 2A (linear regression
model R2 ¼ 0.94; for all subgroups of Studies 1–3, R2 > 0.91).
In line with typical findings, directly generated matching
forces (cyan symbols) consistently exceeded target forces
(dashed line of equality) at every force level. As a function of
target force, the matching force showed increases in both
slope (>1, BF10¼ 1.92� 1018) and intercept (>0, BF10¼ 3.35�
109) (cyan bars in Fig. 2C), a pattern that was also observed
in Study 2 (23) for every age-based subgroup (young sub-
group: slope BF10 ¼ 9.13 � 106, intercept BF10 ¼ 1.58 � 105;
middle-age subgroup: slope BF10¼ 1.22� 1014, intercept BF10¼
1.21 � 1011; older group: slope BF10 ¼ 2.64 � 104, intercept
BF10 ¼ 3.74 � 109). The healthy subgroup in Study 3 (22)
showed a significant increase in intercept only (BF10 ¼
6.63 � 105; slope BF10 ¼ 0.24), while the patient subgroup
(which displayed reduced attenuation overall according to
the original study) showed an increased intercept (BF10 ¼
2.14 � 108) paired with a decrease in slope (BF10 ¼ 7.22).

Consistent with classical findings, reproduction of target
forces was substantially more accurate when the matching
force was generated indirectly (red symbols in Fig. 2A).
Nonetheless, in Study 1, linear regression coefficients indicated
deviations from equality in both slope (<1, BF10 ¼ 20.55) and
intercept (>0, BF10 ¼ 2 � 1031). This pattern was replicated in
the other studies and subgroups (red bars in Fig. 2C), with the
exception of the young adult subgroup (strong evidence for an
increase in intercept, BF10¼ 203; moderate evidence against a
change in slope, BF10 ¼ 0.17) and the middle-aged subgroup
(weak evidence for a reduction in slope, BF10¼ 1.13; moderate
evidence against a change in intercept, BF10 ¼ 0.23) of Study
2. These results are consistent with predictions of our model
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of the task (Fig. 1D), in which accumulated bias and variability
inmemory for the sensation of the target force, possibly sup-
plemented by noise in the comparison process itself, cause
matching forces to deviate from target forces even in the
absence of predictive attenuation. More specifically, the par-
ticular pattern observed across studies for the indirect condi-
tion, of a decrease in slope paired with an increased intercept,
is consistent with the classical finding of contraction bias in
memory (37, 38), wherebymemory for the current target force
is influenced by the history of target forces on preceding tri-
als, leading to a bias towards themean of the presented forces.
Notably, in Study 2, we observed a progressive flattening of
indirect matching slopes with age, consistent with the well-
established age-related decline in short-term memory per-
formance (39, 40).

Isolating Effects of Predictive Attenuation

The results above are typical of a wide range of previous
force-matching studies, in which healthy participants were
found to be close to accurate in indirect force reproduction
but substantially exceeded target forces in direct reproduc-
tion. However, when analyzing slopes and intercepts, there
is considerable variation across groups and studies, making
it difficult to discern a consistent pattern. We hypothesized
that this variation was at least partly due to the memory and
comparison components identified in our model of the task,
rather than the attenuation of perceived force in the direct
condition. As these nonpredictive components are identical
in direct and indirect conditions, the effects of predictive
attenuation should be better isolated by comparing match-
ing forces in the two conditions for the same target force.
Figure 2B plots data from Study 1 in this way (see Fig. A2 and
Fig. A3 for other datasets). This relationship was again close
to linear (R2 ¼ 0.97; for all subgroups of Studies 1–3, R2 ¼

0.96), with slopes and intercepts plotted as purple bars in
Fig. 2C. Relative to results from the individual conditions
(cyan and red bars), comparing direct to indirect matching
forces reduced variability across subgroups, revealing con-
sistent evidence for a strong deviation in slope in every sub-
group (excepting patients in Study 3) and a relatively
reduced (though still nonzero) intercept.

This approach also clarified results for the patients in
Study 3 (rightmost bars in Fig. 2C), indicating that the
greater accuracy of force matching in patients with
schizophrenia reflected a strong reduction in slope com-
pared with age-matched controls, approaching veridical-
ity (slope of 1), but a negligible change in intercept. In
Study 2, the increasing exaggeration of target forces with
age was observed in both slope and intercept, once mem-
ory effects were accounted for.

Evidence for Excess Variability in Direct Force
Reproduction

Our model of force matching predicts excess variability in
the direct compared to indirect condition (Fig. 1D), arising
from variability in the predictive processes involved in sen-
sory attenuation (i.e., efference copy noise and prediction
noise in Fig. 1D). Figure 3A plots within-participant across-
trial variability inmatching force as a function of target force
level for Study 1. Matching force variability was substan-
tially greater in the direct condition (cyan) than in the
indirect condition (red) at each target force level compared
with the indirect condition. This finding was consistent
across all datasets and subgroups as measured by differen-
ces in regression parameters between the two conditions
(Fig. 3B; all BF10 > 5.6).

Although matching force variability was consistently
larger in direct than in indirect condition for the same target
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force, the mean matching force was also higher in the direct
condition. Variability of force output has been found to scale
with the mean amplitude (41, 42), so to examine whether
this was a viable explanation for the increased variability, we
next regressed matching force SD in the two conditions
against mean matching force (Fig. 3C shows results from
Study 1; Fig. 3D plots regression coefficients for each dataset
and subgroup). As predicted, variability increased withmean
force amplitude in both direct and indirect conditions (posi-
tive slope in all subgroups; all BF10> 1644). However, match-
ing force variability was consistently greater in direct than in
indirect condition for the same mean force amplitude (cyan
symbols above red symbols in Fig. 3C), an effect primarily
driven by increased slope in the regression model for every
dataset and subgroup (cyan bars vs. red bars in Fig. 3D, top;
healthy subgroup BF10¼ 1.1., all other BF10> 591).

Subtractive versus Divisive Models of Attenuation

Having confirmed qualitative predictions of the model
framework, we next computed formal model fits for each of
the datasets and subgroups. This required us to specify how
the attenuation process quantitatively changes the sensation
of force: we considered two variant models, one in which the
attenuation was subtractive and one in which it was divisive.
In the subtractive model, the attenuation process subtracts a
fixed amount (the attenuation factor) from a perceived force
onlywhen it is directly self-generated: as a result, thematching
force in the direct condition exceeds that in the indirect condi-
tion by a fixed amount. In the divisive model, a fixed fraction
of a perceived force is instead removed when self-generated,
equivalent to dividing it by the attenuation factor: as a result,
thematching force in the direct condition equals thematching
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force in the indirect condition multiplied by the attenuation
factor. In both variantmodels, the attenuation factor was fixed
with respect to different levels of target and matching force
but incorporated trial-to-trial variability. Specifically, the
attenuation factor wasmodeled as a normally distributed ran-
dom variable withmean and SD as free parameters.

The Divisive Model Provides a Close Fit to Behavioral
Data

Formal model comparison demonstrated that the divisive
model provided a superior fit to behavioral responses on the
force matching task compared to the subtractivemodel in all
subgroups of Studies 1–3 (Study 1, 4DIC ¼ 1039.4; Study 2,
4DIC� 201 for all age-groups; Study 3, healthy participants:
4DIC ¼ 169.1, patients: 4DIC ¼ 2.5). Later, we present fur-
ther results obtained from fitting the divisive model. Results
for the subtractive model are available in the APPENDIX (Table
A1 and Figs. A6 and A7).

The fit of the divisive model to data is exemplified by the
posterior predictive distributions for Study 1 shown as
shaded areas in Fig. 4. These model predictions accurately
reproduced the empirical distributions (gray histograms) of
matching forces in direct (cyan) and indirect (red) conditions
at each force level. The effect of attenuation in the direct
condition is observed as an increases compared with the
indirect condition in mean, variance, and skewness of the
matching force distributions. Skewed distributions (note
long tails in direction of larger matching forces in direct con-
dition; Fig. 4) are a prediction of the divisive model, arising
from multiplication of two unskewed random variables
(attenuation factor and indirect matching force), and con-
tribute to its superior fit over the subtractivemodel.

To quantify the quality of fit, we calculated Bayesian P
values from the posterior predictive distributions in the
direct condition. We observed Bayesian P values that
were consistently around the ideal value of 0.5 (0.47 � all
P values � 0.51), indicating a close match between simu-
lated and observed data. The divisive model provided a
similarly close match to the data from Studies 2 and 3
(Figs. A4 and A5, respectively). Again, the strong resem-
blance between the simulated and observed data was
numerically verified by calculating the Bayesian P values
for each dataset and target force level, consistently finding
values around 0.5 both in Study 2 subgroups (young 0.46 �
all P values � 0.52; middle 0.47 � all P values � 0.53; older
0.47 � all P values � 0.52), and Study 3 subgroups (healthy
controls: 0.45� all P values� 0.52) and patients: 0.44 � all P
values� 0.54).

Mean and Variability of the Attenuation Factor

Figure 5A displays the observed posterior distributions for
the population-level mean attenuation factors from the
divisive model. We summarized these posterior distribu-
tions by calculating the median values. In Study 1, the
estimated (posterior median) mean attenuation factor
was 1.61 [90% highest density interval (HDI) ¼ [1.56, 1.66],
describes the range of values within which the parameter of
interest lies with 90% probability]. This value indicates that,
on average at the population level, a force generated indirectly
through the response device was perceived as 61% more
intense than the same force when directly self-generated; or
equivalently, that perception of the directly self-generated
force was attenuated by 38% (1� 1 / 1.61¼ 0.38). Across the dif-
ferent subgroups of Studies 1–3, the posterior distributions of
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the mean attenuation factors exhibited clear heterogeneity.
Importantly, none of the reported HDIs include the value of 1,
indicating that in all examined datasets, the perception of force
in direct self-generation was attenuated in comparison to the
indirect condition.

The posterior distributions of the standard deviation of
the attenuation factor in the divisive model are shown in
Fig. 5B. In contrast to the mean attenuation factor, esti-
mates of this parameter exhibited much greater uniform-
ity between datasets. Specifically, in Study 1, the median
parameter was found to be 0.152 (90% HDI [0.128, 0.174]),
indicating that the perceived intensity difference between
conditions varied from trial to trial about its mean of 61%
with an SD of 15%. This is approximately equivalent to an
attenuation of the directly self-generated force by 38% ±
6%. Similar values were found for the different subgroups
of Studies 2 and 3.

Attenuation Scales with Age

Study 2 compared the mean exaggeration of the target
force in the direct condition across the three groups based
on age difference, providing an opportunity to examine how
sensory attenuation varies with age. Estimatedmean attenu-
ation factors were 1.45 (90%HDI [1.365, 1.536]) in the sample
of young adults, 1.71 (90% HDI [1.63, 1.793]) in the sample of
middle-aged participants, and 1.97 (90% HDI [1.834, 2.096])
in the sample of older adults (Fig. 5A). This suggests an
increase in mean attenuation factor with age, consistent
with conclusions of the source study. To corroborate this
observation statistically, we calculated the mean differences
(MD) between posterior distributions from these groups. We
found that young adults had a lower mean attenuation factor
compared with both middle-aged adults (MD ¼ �0.259, 95%
HDI [�0.402, �0.12]) and older adults (MD ¼ �0.514, 95%
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tion-level central tendency parameters of
the divisive attenuation model fit sepa-
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Black lines indicate the posterior median.

PREDICTIVE ATTENUATION AND EXCESS VARIABILITY IN SELF-TOUCH

J Neurophysiol � doi:10.1152/jn.00055.2025 � www.jn.org 415

Downloaded from journals.physiology.org/journal/jn (080.005.197.068) on July 17, 2025.

http://www.jn.org


HDI [�0.698,�0.322]), while middle-aged participants had a
lower estimate compared with older adults (MD ¼ �0.255,
95%HDI [�0.438, –0.067]).

In contrast, the standard deviation of the attenuation fac-
tor exhibited greater similarity among the three subgroups,
with a trend to decreasing SD with age (Fig. 5B). To quantify
this, we again calculatedMDs between posteriors in different
groups and, in all cases, found that the 95% HDI encom-
passed zero, indicating no evidence for a difference in esti-
mated parameters. Specifically, this was the case when
comparing young andmiddle-aged adults (MD¼ 0.022, 95%
HDI [�0.033, 0.079]), young and older adults (MD ¼ 0.042,
95% HDI [�0.025, 0.11]), and middle-aged and older adults
(MD¼ 0.02, 95%HDI [�0.045, 0.082]).

Patients with Schizophrenia Have Reduced Sensory
Attenuation

The data in Study 3 comprised groups of schizophrenic
patients and neurotypical controls. Estimates of the mean
attenuation factor were 1.708 (90% HDI [1.498, 1.928]) for
controls and 1.372 (90% HDI [1.213, 1.526]) for patients
(Fig. 5A). This suggests that, on average, healthy controls
exhibited stronger sensory attenuation. To confirm this, we
calculated the mean difference between the posterior distri-
butions, revealing that the attenuation factor was indeed
statistically larger in the group of healthy participants (MD¼
0.3361, 95%HDI [0.007, 0.649]).

Comparing the estimated standard deviation of the attenu-
ation factor between the two groups (Fig. 5B), we found that a
trend for smaller SD in patients did not reach conventional
significance, as indicated by a 95% HDI of MD containing
zero (MD ¼ 0.111, 95% HDI [�0.008, 0.234]). Similarly to the
comparison between samples in Study 2, a clear difference in
the estimated attenuation factors was not accompanied by a
significant difference in their variability. Note, however, that
the posterior estimates from this study exhibited relatively
higher uncertainty in parameter estimates (i.e., broader poste-
rior) compared to other subgroups, most likely due to the
smaller number of participants in each subgroup.

Testing a Nonpredictive Gating Account of Attenuation

A key component of the proposed model is a predictive
mechanism (the forward model) that estimates sensory con-
sequences of motor commands, enabling self-generated sen-
sory inputs to be attenuated at an early stage of processing.
Alternatives to this account propose that sensitivity to the
matching force in the passive finger is decreased through a
nonpredictive gatingmechanism triggered bymuscle activa-
tion or tactile feedback in the active finger (18–20). Such
nonpredictive gating has been clearly demonstrated in
active or moving body parts (43–48) but not in passive ones.
As the right index finger is active in indirect as well as direct
conditions (moving the slider or joystick), this account addi-
tionally requires that the gating is weaker in the indirect con-
dition, perhaps because less force is required to adjust the
response device.

To investigate the role of motor activity and feedback in
the active finger in force matching, we applied our model to
the data from Study 4, which manipulated the transmission
of force from the active to the passive finger (5). Figure 6A

illustrates forces produced by the active finger and forces
transmitted to the passive finger across the target force levels
in the three gain conditions.

For the hierarchical fitting, as our interest was in compar-
ing the three different conditions of direct reproduction, we
fixed parameters corresponding to indirect force generation
for each participant and condition to the same set of popula-
tion-level parameters estimated from Study 1 (which had
matching target force levels), and performed fitting on direct
condition data separately for each gain condition. The
observed population-level posterior distributions are shown
in Fig. 6B. Although the gating hypothesis would predict less
attenuation as the factor multiplying the input force
increases, we obtained highly consistent estimates of
the mean attenuation factor across the three conditions.
Specifically, the estimated (posterior median) mean attenua-
tion factors were 1.175 (90%HDI [1.066, 1.281]) for the gain fac-
tor of 0.5, 1.204 (90%HDI [1.099, 1.312]) for the gain factor of 1,
and 1.191 (90% HDI [1.108, 1.269]) for the gain factor of 2. We
then calculated themean differences between posterior distri-
butions of these groups and, in all cases, found that the 95%
HDI encompassed zero, indicating no differences in estimated
parameters between these groups (MD0.5–1 ¼ –0.03, 95% HDI
[�0.211, 0.156]; MD0.5–2 ¼ �0.016, 95% HDI [�0.176, 0.147];
MD1–2¼ 0.014, 95%HDI [�0.148, 0.176]).

A similar conclusion can be drawn when comparing the
posterior distributions of the standard deviation of the
attenuation factor (Fig. 6C). The obtained posterior estimates
were 0.113 (90% HDI [0.044, 0.18]) for the gain factor of 0.5,
0.091 (90% HDI [0.031, 0.138]) for the gain factor of 1, and
0.117 (90% HDI [0.065, 0.163]) for the gain factor of 2.
Calculating MDs between these posterior distributions, here
we also found that the 95% HDI in all cases encompassed
zero, indicating no differences in estimated parameters
between these groups (MD0.5–1 ¼ 0.024, 95% HDI [�0.079,
0.129]; MD0.5–2 ¼ �0.001, 95% HDI [�0.103, 0.099]; MD1–2 ¼
�0.026, 95%HDI [�0.112, 0.064]).

DISCUSSION
Here, we proposed a formal computational model of the

processes leading to exaggeration of target forces in the force
matching task (2). According to this model, matching forces
recorded in both direct and indirect reproduction conditions
are subject to identical sources of perceptual, memory, and
comparison noise, differing only in the presence or absence
of predictive attenuation. On this basis, we isolated a pure
measure of attenuation strength by comparing the matching
forces between the two conditions. This analysis confirmed
and extended previous conclusions that attenuation is
enhanced in older compared to younger individuals (23) and
weaker in patients with schizophrenia compared to age-
matched control participants (22).

Previous studies suggested that a network including cerebel-
lum, secondary somatosensory cortex (SII), and premotor cor-
tex is involved in sensorimotor prediction and sensory
attenuation (e.g., Refs. 21, 49, and 50). Reduced connectivity in
cerebellar-midbrain and cerebellar-thalamic networks has
been proposed as a plausible functional basis for the role of the
cerebellum in psychotic disorders such as schizophrenia (51,
52). The reduction in sensory attenuation previously observed
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in patients with schizophrenia (22), and further delineated by
our analysis, could be related to impaired cerebellar function,
weakening the ability to predict movement consequences or
use the prediction to attenuatematched sensory input. On the
contrary, the increased attenuation found in older participants
suggests that cerebellar impairment cannot provide a straight-
forward account of all modulations of sensory attenuation.

Removing the confounding effect of memory bias proved
particularly important for older individuals: in indirect force
matching, we observed a bias toward the average target force
that grew stronger with age. This is consistent with a classical
contraction bias (37, 38) in which memory of the target force
on the current trial is drawn toward the average of target
forces on previous trials. The increase in bias with age may
reflect a corresponding decline in workingmemory fidelity.

Our model made a specific prediction of excess trial-to-trial
variability in the direct compared with the indirect condition,
attributed to variation in attenuation level due to noise in
motor prediction. We experimentally confirmed this predic-
tion in every dataset, observing higher variability in the direct
condition compared with the indirect condition, even when
accounting for the differentmagnitudes of themeanmatching
forces. One possible counterargument is that, rather than pre-
diction noise, the higher variability in the direct condition
could stem from higher motor noise, since participants use
their right index finger to press in the direct condition but use
it to manipulate a response device in the indirect one.
However, the force-matching studies were designed to mini-
mize contributions of motor noise by averaging the force
applied to the passive finger on each trial over a period of 500
ms. Moreover, if motor noise was responsible for the excess
variability, the higher motor variability typically observed in
older adults (53) would then be expected to produce greater

excess variability, whereas we observed comparable variability
across all age groups. Similarly, the trend toward smaller
excess variability observed in the patients with schizophrenia
would imply that patients have lower motor variability com-
pared to controls, contradicting previous findings (54).

We proceeded to test two alternative accounts of how
attenuation affects predicted force sensations. According to a
subtractive account of attenuation, a self-generated force is
perceived as weaker than an externally generated force by a
fixed amount that does not scale with the force amplitude.
Supporting this notion, Walsh et al. (14) and Bays andWolpert
(5) found that attenuation in the direct conditionmainly con-
sisted of a fixed “offset” from the target force. However, nei-
ther of these studies compared the direct condition to an
indirect condition, raising the possibility that their findings
might reflect biases unrelated to prediction, e.g., the above-
mentioned contraction bias. According to the alternative divi-
sive account, the difference in perceived force scales with the
magnitude of the force, with lighter forces being subject to less
attenuation compared with stronger forces. In other words,
these two alternative hypotheses would have different effects
on the perception of the weakest tactile stimuli. Formalmodel
comparison decisively supported this divisive account of
attenuation, based on the differing predictions for the distri-
butions of matching forces. The divisive account of attenua-
tion straightforwardly explains why even the lightest self-
generated touch remains perceptible, despite being attenuated
relative to an equivalent external force.

As the direct and indirect conditions differ in the amplitude
of force applied by the active finger, it has been argued (18–
20) that overestimation of forces in the direct condition could
arise from a non-predictivemechanism based on this activity,
similar to the sensory gating that suppresses tactile input in a

A B

C

Figure 6. Evidence against a gating account. A: forces generated by active finger (empty symbols and dashed line) and forces applied to passive finger
(filled symbols and solid line) during direct matching in the three different gain conditions of Study 4 (passive and active forces are identical for gain¼ 1,mid-
dle panel). Error bars indicate ±SE; shaded areas indicate 95% CI. B and C: posterior densities for the mean attenuation factor and the SD of attenuation fac-
tor, based on the divisive attenuation model fit separately to each gain condition. Horizontal lines indicate the posterior median. SD, standard deviation.
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moving effector regardless of its predictability (43), but now
spreading to affect the passive finger of the other hand.
Applying ourmodeling methods to previous data from a gain
manipulation experiment (5) provided evidence against the
gating hypothesis. Despite a fourfold variation across gain
conditions in the force output in the active finger, we
observed attenuation of similar magnitude and variability
across all conditions. This result appears incompatible with
nonpredictive gating due to activity in the hand applying the
force, which varied widely across conditions, but is consistent
with a mechanism that attenuates the sensation based on a
prediction of the force received on the passive finger, which
remained approximately constant across conditions. These
results also appear to rule out any nonpredictive mechanism
based on tactile feedback in the active finger, which similarly
varied fourfold in amplitude across gain conditions.

These findings align with studies that found attenuation
and gating are governed by separate mechanisms (13, 55, 56),
and a range of previous observations supporting a predictive
basis for attenuation of self-generated touch. These include
the finding that attenuation is present when fingers are
expected tomake contact, even if they fail to do so (4) (recently
replicated in Ref. 6), whereas attenuation is not observed when
the same movement is made without an expectation of con-
tact, or when equivalent forces are presented passively to both
fingers (3). The constant attenuation across different gain con-
ditions implies that the predictivemechanism could update to
reflect the new gain relationship, consistent with previous evi-
dence for adaptability of the attenuation process to delays in
force transmission (57, 58).

In a previous study based on the “free-energy” model by
Friston (59), Brown et al. (15) proposed that sensory attenua-
tion is a necessary component of action. According to this
account, voluntary movements are the result of an internal
prediction that movement is occurring: the disparity
between the proprioceptive feedback expected on this basis
and the actual feedback is resolved by the muscular system
generating the predicted movement. These authors argued
that strong evidence from the other senses that movement is
not occurring will prevent movement initiation, and pro-
posed to resolve this by increasing internal uncertainty
about these sensory signals around the time of the predicted
movement. To account for the attenuation of self-generated
forces observed in the force-matching task, the authors fur-
ther proposed that the perceived magnitude of a force is
fixed to the 90% lower confidence bound on the internal esti-
mate of magnitude, i.e., that forces that have higher uncer-
tainty associated with them are perceived as weaker.

The free-energy account has some common elements with
our proposedmodel of attenuation, in particular, the mecha-
nism in both cases is based on predicting the sensory conse-
quences of self-action. However, there are also significant
differences. In the present model, the goal of predicting sen-
sory consequences is to downweigh them relative to sensa-
tions with an external cause; excess variability is an
inevitable but incidental consequence of noise in the predic-
tive process. In the free-energy model, the goal is to increase
internal uncertainty about whether a force is being self-gen-
erated, because this is necessary to permit a force to be self-
generated: attenuation is an incidental by-product of this
increase in uncertainty, solely due to their assumption that

more uncertain forces are perceived as weaker. Uncertainty
could be increased by injecting noise into sensory inputs,
which would predict excess variability in estimating self-
generated forces; however, this does not appear to be a nec-
essary component of the free-energy model, as uncertainty
could instead be added to the prior or directly to the poste-
rior without increasing variability. Predictions for variability
in force estimation were not discussed in the previous paper.

Importantly, Brown et al. (15) modeled attenuation of self-
generated forces in the context of force matching, but did
not model the sequence of events in a force matching trial
[in fact in Brown et al.’s (15) simulations, external forces were
generated tomatch the lower confidence bound on a preced-
ing self-generated force] or consider how variability in
perception, memory or sensory predictions would affect
reproduction of an external force. Attenuation in the free-
energy model is due to a seemingly ad hoc assumption relat-
ing perception of sensation to uncertainty, which conflicts
with the wider literature on sensory perception, including
Bayesian models of perception (60). In contrast, the princi-
ple that self-generated sensations are actively cancelled, as
in the present model, is supported by neurophysiological
studies inmultiple model systems (7–10).

More recently, the free-energy model inspired two works
where a robotic arm was controlled by a hierarchical recur-
rent neural network (RNN) designed to follow the free-
energy minimization principle (16, 17). The RNNwas trained
to make movements with feedback consistent with self-gen-
erated and externally generated contexts. After training, the
precision of the sensory prior was reduced in the self-pro-
duced context and increased for externally generated sensa-
tions, similarly to Brown et al. (15). However, these studies
did not address the perceived intensity of force sensation
and did not model the forcematching task.

A key assumption of our model of the force-matching task
is that the attenuationmechanism is inactive in the indirect
condition. This might seem counterintuitive, given that the
force in the passive finger is “self-generated,” in the sense
that it is controlled by the participant moving the joystick or
slider and, at least in principle, predictable based on move-
ment of the active hand. In common with previous accounts
(2, 5, 21, 22), we suggest attenuation is absent because the
causal relationship between action and sensory consequence
in this condition is novel and lacks an ecologicalmechanism.
This interpretation is consistent with previous findings that
physically separating the finger applying a force from the
finger receiving it reduces the level of attenuation [although
does not eliminate it (5)], and that forces that are predictable
based on active finger movement but not associated with a
contact event do not show attenuation (3, 6, 20). Previous
evidence that the predictive mechanism can adapt to
changes in the causal relationship (57, 58) suggests that
attenuation might develop in the novel context with suffi-
cient exposure, but this may take considerably longer than a
typical experimental session. Note that sensory prediction is
not necessary for the task of force reproduction using a joy-
stick or slider (or indeed a finger press), as this can be
achieved with a simple feedback control loop.

A possible alternative account for the absence of attenua-
tion in the indirect condition is based on the fact that selec-
tive attention is divided between two spatial locations (the
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passive finger is located under the force lever while the active
finger is at the location of the response device), whereas in the
direct condition the fingers are approximately colocated.
Although focused attention is not generally associated with a
reduction in perceived intensity, it might be argued that the
forces in active and passive fingers aremore difficult to disam-
biguate when they are colocated and this confusion in some
way leads to a lessening of the perceived force. However, this
account would be inconsistent with the substantial body of
evidence for predictive attenuation in “tapping” tasks, where
the task-relevant events all occur in the same physical loca-
tion, and test taps are compared with externally applied refer-
ence taps of varying amplitude to determine the point of
subjective equality (3, 4, 55, 58). For example, in Bays et al. (3),
when a self-generated force was produced by an active finger
tapping on a passive finger, the perceived force in the passive
finger was attenuated, but when equivalent forces were exter-
nally applied simultaneously to both fingers, no attenuation
was observed, despite the spatial locations and postures of the
fingers being identical.

Taken as a whole, the observations above imply that the
predictability of a sensory input is necessary but not sufficient
for it to be attenuated. Predictive attenuation may have
evolved to enhance sensitivity to sensations with an external
origin, perhaps because they are more likely to indicate
a threat or otherwise require a behavioral response. For
this purpose, downweighing inputs based purely on their pre-
dictability would be inadequate, as many sensory events with

external causes can be predicted (e.g., the sound of a door
shutting can be predicted if you observe someone pushing it).
Moreover, attenuating predictable signals could impair our
ability to learn further causal relationships involving them. If
attenuation requires a determination of self (vs. external)
cause in addition to predictability, it may be related to a sense
of agency (61). Future studies could examine whether the
adaptation of attenuation to changed causal relationships
(e.g., delays) is coupled to increases in the perception of self-
agency in the interaction.

APPENDIX

Hierarchical Bayesian Modeling

Model specification.
Figure A1 shows a graphical illustration of the hierarchical
Bayesian model we fit to empirical force-matching data. In
brief, for each participant and force level, we fit two parame-
ters (mean and SD) to account formatching forces in the indi-
rect condition. These participant-level parameters were
samples from normal and gammahyperdistributions, respec-
tively, which were unique to each force level but common to
all participants. For each participant, we fit two further
parameters to account formatching forces in the direct condi-
tion across all force levels: these were themean and SD of the
attenuation factor, the key parameters of interest for our

Figure A1. Graph describing the Bayesian
hierarchical model. Unshaded and shaded
circular nodes indicate unobserved and
observed variables, respectively. Single-
bordered nodes denote stochastic varia-
bles, while double-bordered nodes denote
deterministic variables (as the mean direct
matching force and standard deviation are
fully determined by the stochastic means
and standard deviations of the indirect
force and attenuation factor). Plates indicate
repetitive structures within the model. The
additive version of the model is shown: the
divisive model has an additional determinis-
tic node corresponding to the skewness of
direct matching forces.
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analysis. These participant-level parameters were again
sampled from normal and gamma hyper-distributions com-
mon to all participants. Each parameter associated with a
hyperdistribution (nodes outside the participant plate) was
constrained by a hyperprior distribution. Later, we provide a
full description of themodel.

Indirect matching forces.
We simultaneously fit the data from all conditions within
each experiment. Our aim for the indirect reproduction
conditions (I) was to measure the matching forces rather

than to predict them, so we modeled the matching forces
on these trials as samples drawn from a normal distribu-
tion, with a unique pair of mean and SD parameters for
each target force level t and participant:

Ft
I 	Normalð�Ft

I;rFt
I
Þ: ðA1Þ

Note that for readability, we suppress the participant
index on all variables. For each participant, we set individ-
ual-level priors for the mean and standard deviation within
each force level:

Figure A2.Matching forces and trial-to-trial variability in matching force in Study 2. A: mean matching force as a function of target force, for direct (cyan)
and indirect (red) conditions. Data are shown as symbols and linear fits as lines. B: matching force in the direct condition plotted against matching force
in the indirect condition, with linear fit. Symbols indicate mean matching forces for each target force level. C: standard deviation of matching force as a
function of target force, for direct (cyan) and indirect (red) conditions, with linear fits.D: standard deviation of matching force as a function of mean match-
ing force, with linear fits. Each symbol corresponds to a single target force level. A–D: young subjects. E–H: same as A–D but for middle-aged subjects.
I–L: Same as A–D but for older subjects. Error bars indicate61SE, and shaded areas indicate 95% CI. CI, confidence interval; SE, standard error.

Figure A3.Matching forces and trial-to-trial variability in matching force in Study 3. A: mean matching force as a function of target force, for direct (cyan)
and indirect (red) conditions. Data are shown as symbols and linear fits as lines. B: matching force in the direct condition plotted against matching force
in the indirect condition, with linear fit. Symbols indicate mean matching forces for each target force level. C: standard deviation of matching force as a
function of target force, for direct (cyan) and indirect (red) conditions, with linear fits.D: standard deviation of matching force as a function of mean match-
ing force, with linear fits. Each symbol corresponds to a single target force level. A–D: Healthy subjects. E–H: same as A–D but for patient subjects. Error
bars indicate61SE, and shaded areas indicate 95% CI. CI, confidence interval; SE, standard error.
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Figure A4. Posterior predictive densities for
Study 2. A: young subject. B: middle-aged
subjects. C: older subjects. Gray histograms
show matching forces pooled across all par-
ticipants. Colored distributions show simu-
lated matching forces based on posterior
predictive density. The circles with error bars
show the median and 90% HDI for data
(black) and simulated trials for the same con-
dition (cyan: direct, red: indirect). HDI, highest
density interval.
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�Ft
I 	Normalðl�Ft

I
; 1= ffiffiffiffiffiffis�Ft

I

p Þ
rFt

I
	GammaðsrFt

I

; rrFt
I

Þ : ðA2Þ

These individual-level parameters were, in turn,
dependent on population-level hyperparameters, with
hyperpriors:

l�Ft
I
	NormalðFt

T ; 1=
ffiffiffiffiffiffiffi
0:3

p Þ
s�Ft

I
	Gammað0:001;0:001Þ : ðA3Þ

The shape (s) and rate (r) parameters of the gamma prior
distribution on rFt

I
had priors defined in terms of the central

tendency andwidth of the distribution:

lrFt
I

	Gammað0:01;0:01Þ
rrFt

I

	Gammað0:001;0:001Þ : ðA4Þ

We then used a simple reparametrization to convert the
mean and standard deviation into the shape and rate param-
eters (35):

Figure A5. Posterior predictive densities for Study 3. A: healthy subject. B: patients subjects. Gray histograms show matching forces pooled across all
participants. Colored distributions show simulated matching forces based on posterior predictive density. The circles with error bars show the median
and 90% HDI for data (black) and simulated trials for the same condition (cyan: direct, red: indirect). HDI, highest density interval.
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srFt
I

¼
l2rFt

I

r2
rFt

I

rrFt
I

¼
lrFt

I

r2
rFt

I

: ðA5Þ

Parameterizing a gamma distribution in terms of the
mean and standard deviation, as done here, results in a
muchmore intuitive interpretation of the prior and resulting
posterior distributions than when using shape and rate
parameters. However, gammadistributions are typically pos-
itively skewed, which can affect their means due to their
asymmetric tails. In this case, a potentially better measure of
central tendency is the median. As the median of a gamma
distribution has no simple closed form, we opted to define
priors over the mean instead. This approach offers a prag-
matic compromise, particularly when using weakly informa-
tive priors. After fitting the model and obtaining the
posterior distributions, we estimated the median numeri-
cally by first generating 107 random samples using the
accepted parameters on eachMCMC iteration, and then cal-
culating the median of those samples to estimate the poste-
rior distribution of the standard deviation of the attenuation.
For completeness, we additionally computed themode using
the fitted shape and rate parameters of the gamma distribu-
tion (35). Comparisons conducted on the mode estimates
were largely consistent with those performed on themedian
estimates.

Direct matching forces.
Subtractive model. In the subtractive model, direct

matching forces are considered samples from a normal dis-
tribution with mean and SD determined by combining the

indirect force matching parameters corresponding to the
same target force (�Ft

I, rFt
I
) with the attenuation factor param-

eters (�K , rK), according toEqs. 1 and 2:

Ft
D	Normalð�Ft

D;rFt
D
Þ : ðA6Þ

We set individual-level priors for the attenuation
parameters:

�K 	Normalðl�K ; 1=
ffiffiffiffiffiffi
s�K

p Þ
rK 	GammaðsrK

; rrK
Þ ; ðA7Þ

which are again dependent on population-level hyperpara-
meters, with the following hyperpriors:

l�K 	Normalð1:1; 1= ffiffiffiffiffiffiffi
0:1

p Þ
s�K 	Gammað0:001;0:001Þ
lrK

	Gammað0:01;0:01Þ
rrK

	Gammað0:01;0:01Þ
srK

¼ l2rK

r2
rK

rrK
¼ lrK

r2
rK

: ðA8Þ

Divisive model. In the divisive model, attenuated output
force on an individual trial is considered a sample from a
skew-normal distribution (see Skew-Normal Approximation
to the Product of Normals) with mean, SD, and skewness
defined as in Eqs. 3–5:

Ft
D 	SkewNormalð�Ft

D;rFt
D
;Skew½Ft

D�Þ: ðA9Þ

Individual- and population-level priors for the attenua-
tion parameters and hyperparameters were set identically to
the subtractive model (see Subtractive model), except for the
populationmean hyperprior for �K which was set to:

Figure A6. Subtractive model posterior predictive densities for Study 1. Gray histograms show matching forces pooled across all participants. Colored
distributions show simulated matching forces based on posterior predictive density. The circles with error bars show the median and 90% HDI for data
(black) and simulated trials for the same condition (cyan: direct, red: indirect). HDI, highest density interval.
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Figure A7. Subtractive model posterior predictive check. A: Study 1. B: Study 2 (from top to bottom: young, middle, and older subjects). C: Study 3 (from
top to bottom: healthy and patient subjects). The solid and dashed lines show fits of the subtractive and divisive model, respectively. The circles with
error bars show the mean and 95% CI. CI, confidence interval.

Table A1. Summary of subtractive model

No. Sample

Attenuation Factor SD of Attenuation Factor

Bayesian P ValueMedian 90% HDI Median 90% HDI

1 Study 1 1.36 [1.24, 1.49] 0.726 [0.657, 0.803] 0.34 � all P values �0.61
2 Study 2 young 0.76 [0.62, 0.90] 0.48 [0.403, 0.569] 0.43 � all P values �0.54
3 Study 2 middle 1.11 [1.00, 1.23] 0.526 [0.467, 0.586] 0.40 � all P values �0.57
4 Study 2 older 1.41 [1.26, 1.55] 0.646 [0.567, 0.726] 0.39 � all P values �0.60
5 Study 3 healthy 1.15 [0.77, 1.53] 0.727 [0.520, 0.955] 0.39 � all P values �0.55
6 Study 3 patients 0.60 [0.36, 0.84] 0.393 [0.261, 0.528] 0.46 � all P values �0.52
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l�K	Normalð1:75; 1=
ffiffiffiffiffiffiffi
0:1

p
Þ: ðA10Þ

To illustrate the fitted parameters of the divisive model,
we plot the mean population-level attenuation factor (μK) in
Fig. 5A. Following the described reparametrization of the
gamma distribution, we display themedian population-level
standard deviation of the attenuation factor (mrK

) in Fig. 5B.

RESULTS

Linear Regression

Figs. A2 and A3 show data and linear fits obtained for
Studies 2 and 3, respectively, in the same format as shown
for Study 1 in Figs. 2 and 3. Corresponding linear regression
coefficients are reported in Fig. 2C and Fig. 3C.

Divisive model.
Figs. A4 and A5 show the results of fitting the divisive model
to data from Studies 2 and 3, respectively, in the form of pos-
terior predictive distributions. We performed the model fit-
ting separately in the three age subgroups of Study 2 and in
patients and healthy controls for Study 3. Analogously to
Study 1 (Fig. 4), these model predictions accurately repro-
duced the empirical distributions (gray histograms) of
matching forces in direct (cyan) and indirect (red) condi-
tions at each force level.

Subtractive model.
We also fit the subtractive model to the data from Studies 1–3.
Figure A6 shows the results for Study 1 in the form of posterior
predictive distributions. Compared with the divisive model
(Fig. 4), the subtractive model reproduced the distributions of
matching forces across the five force levels less accurately. This
is further illustrated in Fig. A7, which compares empirical and
posterior predicted mean matching forces for the subtractive
and divisive models. A summary of estimated values of the
attenuation factor and its standard deviation for the subtractive
model is reported in Table A1.

Skew-Normal Approximation to the Product of Normals

If X	Nðlx;rxÞ and Y 	 Nðly;ryÞ; for Z ¼ XY; ðA11Þ

E½Z� ¼ lxly; ðA12Þ

Var½Z� ¼ l2yr
2
x þ l2xr

2
y þ r2

xr
2
y ¼ ð1 þ d2x þ d2yÞr2

xr
2
y ; ðA13Þ

Skewness½Z� ¼ 6lxlyr
2
xr

2
y

Var½Z�3=2
¼ 6dxdy

ð1 þ d2x þ d2yÞ3=2
; ðA14Þ

where dx ¼ lx
rx

and dy ¼
ly
ry

: ðA15Þ

This distribution can be approximated by a skew-nor-
mal distribution with the same moments. The skew-nor-
mal has pdf,

pðxÞ ¼ 2
x
/

x� n
x

� �
U a

x� n
x

� �
: ðA16Þ

Defining

d ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2

p ) a ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p ; ðA17Þ

for�1< d< 1.

E½x� ¼ n þ xd
ffiffiffiffiffiffiffiffi
2=p

p
; ðA18Þ

Var½x� ¼ x2ð1� ð2=pÞd2Þ; ðA19Þ

Skewness½x� ¼ c1 ¼
4� p
2

ð2=pÞ3=2 d3

ð1� ð2=pÞd2Þ3=2
; ðA20Þ

) d ¼ Signðc1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
2

jc1j2=3
jc1j2=3 þ ðð4� pÞ=2Þ2=3

vuut ; ðA21Þ

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½x�
1� ð2=pÞd2

s
; ðA22Þ

n ¼ E½x� � xd
ffiffiffiffiffiffiffiffi
2=p

p
: ðA23Þ
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